Câu hỏi:

16/01/2025 9,340

Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\sqrt 2 ,\) chiều cao bằng \(2a\) và \(O\) là tâm của đáy. Bằng cách thiết lập hệ trục tọa độ \(Oxyz\) như hình vẽ bên, ta tính được khoảng cách từ điểm \(C\) đến mặt phẳng \(\left( {SAB} \right)\) bằng

Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\sqrt 2 ,\) chiều cao bằng \(2a\) và \(O\) là tâm của đáy. (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(S.ABCD\) là hình chóp tứ giác đều nên \(SO \bot \left( {ABCD} \right)\)\(ABCD\) là hình vuông.

Suy ra \(OA = OB = OC = \frac{{AC}}{2} = \frac{{a\sqrt 2 \cdot \sqrt 2 }}{2} = a.\)

Dựa vào hình vẽ, ta có \(C\left( {a;0;0} \right),B\left( {0;a;0} \right),A\left( { - a;0;0} \right),S\left( {0;0;2a} \right).\)

Suy ra \(\overrightarrow {AS} = \left( {a;0;2a} \right),\overrightarrow {BS} = \left( {0; - a;2a} \right).\)

Mặt phẳng \(\left( {SAB} \right)\) có một cặp vectơ chỉ phương \(\vec u = \left( {1;0;2} \right)\)\(\vec v = \left( {0; - 1;2} \right)\) nên có vectơ pháp tuyến là \(\vec n = \left[ {\vec u,\vec v} \right] = \left( {\left| {\begin{array}{*{20}{c}}0&2\\{ - 1}&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&1\\2&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&0\\0&{ - 1}\end{array}} \right|} \right) = \left( {2; - 2; - 1} \right).\)

Suy ra mặt phẳng \(\left( {SAB} \right)\) có phương trình là \(2x - 2y - z + 2a = 0.\)

Vậy \(d\left( {C,\left( {SAB} \right)} \right) = \frac{{\left| {2 \cdot a - 2 \cdot 0 - 2 \cdot 0 + 2a} \right|}}{{\sqrt {{2^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{4a}}{3}.\) Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì hướng bay và vận tốc bay của con chim không đổi nên hai vectơ \(\overrightarrow {AB} ,\overrightarrow {BC} \) cùng hướng.

Mặt khác do thời gian bay từ \(A\) đến \(B\) gấp đôi thời gian bay từ \(B\) đến \(C\) nên \(\overrightarrow {AB} = 2\overrightarrow {BC} \)

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{40 - 20 = 2\left( {a - 40} \right)}\\{50 - 40 = 2\left( {b - 50} \right)}\\{50 - 30 = 2\left( {c - 50} \right)}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 50}\\{b = 55}\\{c = 60}\end{array} \Rightarrow a + b + c = 165} \right.} \right.\).

Đáp án: \(165\).

Lời giải

Do \[\Delta :\frac{{x - 2024}}{2} = \frac{y}{1} = \frac{{z + 2025}}{{ - 2}}\] nên \[\overrightarrow u  = \left( {2;1; - 2} \right)\] là một vectơ chỉ phương của đường thẳng \[\Delta \].

Do \[\left( P \right):2x + 2y - z + 1 = 0\] nên \[\overrightarrow n  = \left( {2;2; - 1} \right)\] là một vectơ pháp tuyến của đường thẳng \[\left( P \right)\].

Ta có \[\sin \left( {\Delta ,\left( P \right)} \right) = \frac{{\left| {\overrightarrow u  \cdot \overrightarrow n } \right|}}{{\left| {\overrightarrow u } \right| \cdot \left| {\overrightarrow n } \right|}} = \frac{{\left| {2 \cdot 2 + 1 \cdot 2 - 2 \cdot \left( { - 1} \right)} \right|}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 2} \right)}^2}}  \cdot \sqrt {{2^2} + {2^2} + {{\left( { - 1} \right)}^2}} }} = \frac{8}{9}\].

\[{\cos ^2}\left( {\Delta ,\left( P \right)} \right) = 1 - {\sin ^2}\left( {\Delta ,\left( P \right)} \right) = 1 - \frac{{64}}{{81}} = \frac{{17}}{{81}} \Rightarrow \cos \left( {\Delta ,\left( P \right)} \right) = \frac{{\sqrt {17} }}{9}\].

Suy ra \[\left( {\Delta ,\left( P \right)} \right) \approx 63^\circ \].

Đáp án:       a) Đúng,      b) Đúng,     c) Sai,                    d) Đúng.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP