Câu hỏi:

16/01/2025 19,032

Trong không gian với một hệ trục tọa độ cho trước (đơn vị tính bằng mét). Bạn Huyền quan sát và phát hiện một con chim đang bay với tốc độ và hướng không đổi từ điểm \(A\left( {20;40;30} \right)\) đến điểm \(B\left( {40;50;50} \right)\) trong vòng 4 phút. Nếu con chim bay tiếp tục giữ nguyên vận tốc và hướng bay thì sau 2 phút con chim ở vị trí \(C\left( {a;b;c} \right)\). Tổng \(a + b + c\) bằng bao nhiêu?

Trong không gian với một hệ trục tọa độ cho trước (đơn vị tính bằng mét). Bạn Huyền quan sát và phát hiện một con chim (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì hướng bay và vận tốc bay của con chim không đổi nên hai vectơ \(\overrightarrow {AB} ,\overrightarrow {BC} \) cùng hướng.

Mặt khác do thời gian bay từ \(A\) đến \(B\) gấp đôi thời gian bay từ \(B\) đến \(C\) nên \(\overrightarrow {AB} = 2\overrightarrow {BC} \)

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{40 - 20 = 2\left( {a - 40} \right)}\\{50 - 40 = 2\left( {b - 50} \right)}\\{50 - 30 = 2\left( {c - 50} \right)}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 50}\\{b = 55}\\{c = 60}\end{array} \Rightarrow a + b + c = 165} \right.} \right.\).

Đáp án: \(165\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(S.ABCD\) là hình chóp tứ giác đều nên \(SO \bot \left( {ABCD} \right)\)\(ABCD\) là hình vuông.

Suy ra \(OA = OB = OC = \frac{{AC}}{2} = \frac{{a\sqrt 2 \cdot \sqrt 2 }}{2} = a.\)

Dựa vào hình vẽ, ta có \(C\left( {a;0;0} \right),B\left( {0;a;0} \right),A\left( { - a;0;0} \right),S\left( {0;0;2a} \right).\)

Suy ra \(\overrightarrow {AS} = \left( {a;0;2a} \right),\overrightarrow {BS} = \left( {0; - a;2a} \right).\)

Mặt phẳng \(\left( {SAB} \right)\) có một cặp vectơ chỉ phương \(\vec u = \left( {1;0;2} \right)\)\(\vec v = \left( {0; - 1;2} \right)\) nên có vectơ pháp tuyến là \(\vec n = \left[ {\vec u,\vec v} \right] = \left( {\left| {\begin{array}{*{20}{c}}0&2\\{ - 1}&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&1\\2&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&0\\0&{ - 1}\end{array}} \right|} \right) = \left( {2; - 2; - 1} \right).\)

Suy ra mặt phẳng \(\left( {SAB} \right)\) có phương trình là \(2x - 2y - z + 2a = 0.\)

Vậy \(d\left( {C,\left( {SAB} \right)} \right) = \frac{{\left| {2 \cdot a - 2 \cdot 0 - 2 \cdot 0 + 2a} \right|}}{{\sqrt {{2^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{4a}}{3}.\) Chọn D.

Lời giải

Do \[\Delta :\frac{{x - 2024}}{2} = \frac{y}{1} = \frac{{z + 2025}}{{ - 2}}\] nên \[\overrightarrow u  = \left( {2;1; - 2} \right)\] là một vectơ chỉ phương của đường thẳng \[\Delta \].

Do \[\left( P \right):2x + 2y - z + 1 = 0\] nên \[\overrightarrow n  = \left( {2;2; - 1} \right)\] là một vectơ pháp tuyến của đường thẳng \[\left( P \right)\].

Ta có \[\sin \left( {\Delta ,\left( P \right)} \right) = \frac{{\left| {\overrightarrow u  \cdot \overrightarrow n } \right|}}{{\left| {\overrightarrow u } \right| \cdot \left| {\overrightarrow n } \right|}} = \frac{{\left| {2 \cdot 2 + 1 \cdot 2 - 2 \cdot \left( { - 1} \right)} \right|}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 2} \right)}^2}}  \cdot \sqrt {{2^2} + {2^2} + {{\left( { - 1} \right)}^2}} }} = \frac{8}{9}\].

\[{\cos ^2}\left( {\Delta ,\left( P \right)} \right) = 1 - {\sin ^2}\left( {\Delta ,\left( P \right)} \right) = 1 - \frac{{64}}{{81}} = \frac{{17}}{{81}} \Rightarrow \cos \left( {\Delta ,\left( P \right)} \right) = \frac{{\sqrt {17} }}{9}\].

Suy ra \[\left( {\Delta ,\left( P \right)} \right) \approx 63^\circ \].

Đáp án:       a) Đúng,      b) Đúng,     c) Sai,                    d) Đúng.

Câu 3

Trong không gian \(Oxyz\), phương trình chính tắc của đường thẳng \(AB\) với \(A\left( {1;1;2} \right)\) và \(B\left( { - 4;3; - 2} \right)\) là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Trong không gian \(Oxyz\), mặt phẳng đi qua điểm \(K\left( {1;\,\,1;\,\,1} \right)\) nhận \(\vec u = \left( {1;0;1} \right)\), \(\vec v = \left( {1;1;0} \right)\) là cặp vectơ chỉ phương có phương trình tng quát là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho hình lập phương \(ABCD.A'B'C'D'\). Gọi \(O\) là tâm của hình lập phương. Khẳng định nào dưới đây là đúng?

Cho hình lập phương \(ABCD.A'B'C'D'\). Gọi \(O\) là tâm của hình lập phương. Khẳng định nào dưới đây là đúng? (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay