Câu hỏi:
16/01/2025 22,582
Trong không gian với một hệ trục tọa độ cho trước (đơn vị tính bằng mét). Bạn Huyền quan sát và phát hiện một con chim đang bay với tốc độ và hướng không đổi từ điểm \(A\left( {20;40;30} \right)\) đến điểm \(B\left( {40;50;50} \right)\) trong vòng 4 phút. Nếu con chim bay tiếp tục giữ nguyên vận tốc và hướng bay thì sau 2 phút con chim ở vị trí \(C\left( {a;b;c} \right)\). Tổng \(a + b + c\) bằng bao nhiêu?
Trong không gian với một hệ trục tọa độ cho trước (đơn vị tính bằng mét). Bạn Huyền quan sát và phát hiện một con chim đang bay với tốc độ và hướng không đổi từ điểm \(A\left( {20;40;30} \right)\) đến điểm \(B\left( {40;50;50} \right)\) trong vòng 4 phút. Nếu con chim bay tiếp tục giữ nguyên vận tốc và hướng bay thì sau 2 phút con chim ở vị trí \(C\left( {a;b;c} \right)\). Tổng \(a + b + c\) bằng bao nhiêu?

Quảng cáo
Trả lời:
Vì hướng bay và vận tốc bay của con chim không đổi nên hai vectơ \(\overrightarrow {AB} ,\overrightarrow {BC} \) cùng hướng.
Mặt khác do thời gian bay từ \(A\) đến \(B\) gấp đôi thời gian bay từ \(B\) đến \(C\) nên \(\overrightarrow {AB} = 2\overrightarrow {BC} \)
\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{40 - 20 = 2\left( {a - 40} \right)}\\{50 - 40 = 2\left( {b - 50} \right)}\\{50 - 30 = 2\left( {c - 50} \right)}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 50}\\{b = 55}\\{c = 60}\end{array} \Rightarrow a + b + c = 165} \right.} \right.\).
Đáp án: \(165\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì \(S.ABCD\) là hình chóp tứ giác đều nên \(SO \bot \left( {ABCD} \right)\) và \(ABCD\) là hình vuông.
Suy ra \(OA = OB = OC = \frac{{AC}}{2} = \frac{{a\sqrt 2 \cdot \sqrt 2 }}{2} = a.\)
Dựa vào hình vẽ, ta có \(C\left( {a;0;0} \right),B\left( {0;a;0} \right),A\left( { - a;0;0} \right),S\left( {0;0;2a} \right).\)
Suy ra \(\overrightarrow {AS} = \left( {a;0;2a} \right),\overrightarrow {BS} = \left( {0; - a;2a} \right).\)
Mặt phẳng \(\left( {SAB} \right)\) có một cặp vectơ chỉ phương \(\vec u = \left( {1;0;2} \right)\) và \(\vec v = \left( {0; - 1;2} \right)\) nên có vectơ pháp tuyến là \(\vec n = \left[ {\vec u,\vec v} \right] = \left( {\left| {\begin{array}{*{20}{c}}0&2\\{ - 1}&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&1\\2&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&0\\0&{ - 1}\end{array}} \right|} \right) = \left( {2; - 2; - 1} \right).\)
Suy ra mặt phẳng \(\left( {SAB} \right)\) có phương trình là \(2x - 2y - z + 2a = 0.\)
Vậy \(d\left( {C,\left( {SAB} \right)} \right) = \frac{{\left| {2 \cdot a - 2 \cdot 0 - 2 \cdot 0 + 2a} \right|}}{{\sqrt {{2^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{4a}}{3}.\) Chọn D.
Lời giải
Do \[\Delta :\frac{{x - 2024}}{2} = \frac{y}{1} = \frac{{z + 2025}}{{ - 2}}\] nên \[\overrightarrow u = \left( {2;1; - 2} \right)\] là một vectơ chỉ phương của đường thẳng \[\Delta \].
Do \[\left( P \right):2x + 2y - z + 1 = 0\] nên \[\overrightarrow n = \left( {2;2; - 1} \right)\] là một vectơ pháp tuyến của đường thẳng \[\left( P \right)\].
Ta có \[\sin \left( {\Delta ,\left( P \right)} \right) = \frac{{\left| {\overrightarrow u \cdot \overrightarrow n } \right|}}{{\left| {\overrightarrow u } \right| \cdot \left| {\overrightarrow n } \right|}} = \frac{{\left| {2 \cdot 2 + 1 \cdot 2 - 2 \cdot \left( { - 1} \right)} \right|}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 2} \right)}^2}} \cdot \sqrt {{2^2} + {2^2} + {{\left( { - 1} \right)}^2}} }} = \frac{8}{9}\].
\[{\cos ^2}\left( {\Delta ,\left( P \right)} \right) = 1 - {\sin ^2}\left( {\Delta ,\left( P \right)} \right) = 1 - \frac{{64}}{{81}} = \frac{{17}}{{81}} \Rightarrow \cos \left( {\Delta ,\left( P \right)} \right) = \frac{{\sqrt {17} }}{9}\].
Suy ra \[\left( {\Delta ,\left( P \right)} \right) \approx 63^\circ \].
Đáp án: a) Đúng, b) Đúng, c) Sai, d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.