Câu hỏi:
19/01/2025 8,354
Trong không gian \(Oxyz\), cho hình chóp đều \(S.ABCD\) có đáy \(ABCD\) là hình vuông tâm \(O\), cạnh bằng \(2\sqrt 2 \), cạnh bên \(SA = 4\) (tham khảo hình vẽ).
a) Tọa độ của điểm \(A\) là \(\left( {0;2;0} \right)\).
b) Trọng tâm của tam giác \(SAB\) là \(G\left( {\frac{2}{3}; - \frac{2}{3};\frac{{2\sqrt 3 }}{3}} \right)\).
c) Nếu \(E\left( {a;0;b} \right)\) là điểm trên mặt phẳng \(\left( {Oxz} \right)\) sao cho ba điểm \(C,E,G\) thẳng hàng thì \(a \cdot b = \sqrt 3 \).
d) Nếu \(M\left( {0;m;n} \right)\) là điểm trên mặt phẳng \(\left( {Oyz} \right)\) sao cho \(MG + MB\) đạt giá trị nhỏ nhất thì \({m^2} + {n^2} = 1\).
Trong không gian \(Oxyz\), cho hình chóp đều \(S.ABCD\) có đáy \(ABCD\) là hình vuông tâm \(O\), cạnh bằng \(2\sqrt 2 \), cạnh bên \(SA = 4\) (tham khảo hình vẽ).

a) Tọa độ của điểm \(A\) là \(\left( {0;2;0} \right)\).
b) Trọng tâm của tam giác \(SAB\) là \(G\left( {\frac{2}{3}; - \frac{2}{3};\frac{{2\sqrt 3 }}{3}} \right)\).
c) Nếu \(E\left( {a;0;b} \right)\) là điểm trên mặt phẳng \(\left( {Oxz} \right)\) sao cho ba điểm \(C,E,G\) thẳng hàng thì \(a \cdot b = \sqrt 3 \).
d) Nếu \(M\left( {0;m;n} \right)\) là điểm trên mặt phẳng \(\left( {Oyz} \right)\) sao cho \(MG + MB\) đạt giá trị nhỏ nhất thì \({m^2} + {n^2} = 1\).
Câu hỏi trong đề: Đề thi ôn tốt nghiệp THPT Toán có lời giải !!
Quảng cáo
Trả lời:
Ta có \(AB = 2\sqrt 2 \)\( \Rightarrow OA = OB = 2\)\( \Rightarrow A\left( {0; - 2;0} \right)\). Ta có \(OB = 2 \Rightarrow B\left( {2;0;0} \right)\).

\(OS = \sqrt {S{A^2} - O{A^2}} = \sqrt {16 - 4} = 2\sqrt 3 \Rightarrow S\left( {0;0;2\sqrt 3 } \right)\).
Suy ra tọa độ của trọng tâm của tam giác \(SAB\) là\(G\left( {\frac{2}{3}; - \frac{2}{3};\frac{{2\sqrt 3 }}{3}} \right)\).
Ta có \(C\left( {0;2;0} \right)\)\( \Rightarrow \overrightarrow {CE} = \left( {a; - 2;b} \right)\), \(\overrightarrow {CG} = \left( {\frac{2}{3}; - \frac{8}{3};\frac{{2\sqrt 3 }}{3}} \right)\).
Vì \(C,E,G\) thẳng hàng nên \(\overrightarrow {CE} \) cùng phương với \(\overrightarrow {CG} \)
\( \Rightarrow \frac{{3a}}{2} = \frac{3}{4} = \frac{{b\sqrt 3 }}{2}\)\( \Rightarrow \left\{ \begin{array}{l}a = \frac{1}{2}\\b = \frac{{\sqrt 3 }}{2}\end{array} \right.\)\( \Rightarrow a \cdot b = \frac{{\sqrt 3 }}{4}\).
Do \(D\) đối xứng với \(B\) qua mặt phẳng \(\left( {Oyz} \right)\) nên với mọi điểm \(M\) trên mặt phẳng \(\left( {Oyz} \right)\), ta đều có \(MG + MB = MG + MD\).
Mặt khác, hai điểm \(G\) và \(D\) khác phía so với mặt phẳng \(\left( {Oyz} \right)\) nên \(MG + MD\) nhỏ nhất khi và chỉ khi ba điểm \(G,D,M\) thẳng hàng.
Ta có \(D\left( { - 2;0;0} \right)\), \(\overrightarrow {DM} = \left( {2;m;n} \right),\overrightarrow {DG} = \left( {\frac{8}{3}; - \frac{2}{3};\frac{{2\sqrt 3 }}{3}} \right)\).
Vì \(G,D,M\) thẳng hàng nên \(\overrightarrow {DM} \) cùng phương với \(\overrightarrow {DG} \)
\( \Rightarrow \frac{3}{4} = - \frac{{3m}}{2} = \frac{{n\sqrt 3 }}{2}\)\( \Rightarrow \left\{ \begin{array}{l}m = - \frac{1}{2}\\n = \frac{{\sqrt 3 }}{2}\end{array} \right.\)\( \Rightarrow {m^2} + {n^2} = 1\).
Đáp án: a) Sai, b) Đúng, c) Sai, d) Đúng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét các biến cố:
\({A_1}\): Sản phẩm lấy ra lần thứ nhất bị lỗi. Khi đó, ta có: \(P\left( {{A_1}} \right) = \frac{{39}}{{2000}}\); \(P\left( {\overline {{A_1}} } \right) = \frac{{1961}}{{2000}}\).
\({A_2}\): Sản phẩm lấy ra lần thứ hai bị lỗi.
Khi sản phẩm lấy ra lần thứ nhất bị lỗi thì còn \(1999\) sản phẩm và trong đó có \(38\) sản phẩm lỗi nên ta có: \(P\left( {{A_2}\left| {{A_1}} \right.} \right) = \frac{{38}}{{1999}}\), suy ra \(P\left( {\overline {{A_2}} \left| {{A_1}} \right.} \right) = \frac{{1961}}{{1999}}\).
Khi sản phẩm lấy ra lần thứ nhất không bị lỗi thì còn \(1999\) sản phẩm trong đó có \(39\)sản phẩm lỗi nên ta có: \(P\left( {{A_2}\left| {\overline {{A_1}} } \right.} \right) = \frac{{39}}{{1999}}\), suy ra \(P\left( {\overline {{A_2}} \left| {\overline {{A_1}} } \right.} \right) = \frac{{1960}}{{1999}}\).
Khi đó, xác suất để sản phẩm lấy ra lần thứ hai bị lỗi là:
\(P\left( {{A_2}} \right) = P\left( {{A_2}\left| {{A_1}} \right.} \right) \cdot P\left( {{A_1}} \right) + P\left( {{A_2}\left| {\overline {{A_1}} } \right.} \right) \cdot P\left( {\overline {{A_1}} } \right)\)\( = \frac{{38}}{{1999}} \cdot \frac{{39}}{{2000}} + \frac{{39}}{{1999}} \cdot \frac{{1961}}{{2000}} \approx 0,02\).
Đáp án: \(0,02\)
Lời giải
Ta có \(\int\limits_1^2 {f\left( x \right){\rm{d}}x} = F\left( x \right)\left| {\begin{array}{*{20}{c}}2\\1\end{array} = F\left( 2 \right)} \right. - F\left( 1 \right) = 5 - 9 = - 4\). Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.