Câu hỏi:

25/01/2025 52

Trong các dãy số sau đây, với giả thiết \[{\rm{n}} \in {\mathbb{N}^ * }\]

\[{{\rm{u}}_{\rm{n}}}{\rm{ = }}{\left( {\frac{{\rm{2}}}{{\rm{3}}}} \right)^{\rm{n}}}{\rm{; }}{{\rm{v}}_{\rm{n}}}{\rm{ = }}{\left( {\frac{{\rm{4}}}{{\rm{3}}}} \right)^{\rm{n}}}{\rm{; }}{{\rm{q}}_{\rm{n}}}{\rm{ = sinn + cosn}}\]. Số dãy số bị chặn là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

• Với\[{{\rm{u}}_{\rm{n}}}{\rm{ = }}{\left( {\frac{{\rm{2}}}{{\rm{3}}}} \right)^{\rm{n}}}\]

\[\forall {\rm{n}} \in {\mathbb{N}^ * }\] ta có:

\[\frac{2}{3} < 1 \Leftrightarrow {\left( {\frac{2}{3}} \right)^{\rm{n}}} < {1^{\rm{n}}} \Leftrightarrow {\left( {\frac{2}{3}} \right)^{\rm{n}}} < 1\].  Vậy\[\left( {{{\rm{u}}_{\rm{n}}}} \right)\] bị chặn trên.

\[{\left( {\frac{2}{3}} \right)^{\rm{n}}} > 0\]. Vậy\[\left( {{{\rm{u}}_{\rm{n}}}} \right)\] bị chặn dưới

Ta thấy dãy số \[\left( {{{\rm{u}}_{\rm{n}}}} \right)\] bị chặn trên và bị chặn dưới nên dãy số \[\left( {{{\rm{u}}_{\rm{n}}}} \right)\]bị chặn.

• Với \[{{\rm{v}}_{\rm{n}}}{\rm{ = }}{\left( {\frac{{\rm{4}}}{{\rm{3}}}} \right)^{\rm{n}}}\]

\[\forall {\rm{n}} \in {\mathbb{N}^ * }\]ta có:

\[{\left( {\frac{4}{3}} \right)^{\rm{n}}} > 0\]. Vậy \[\left( {{{\rm{v}}_{\rm{n}}}} \right)\]bị chặn dưới và không bị chặn trên.

• Với\[{{\rm{q}}_{\rm{n}}}{\rm{ = sinn + cosn}}\]

\[{{\rm{q}}_{\rm{n}}}{\rm{ = }}\sqrt {\rm{2}} \left( {\frac{{\rm{1}}}{{\sqrt {\rm{2}} }}{\rm{sinn + }}\frac{{\rm{1}}}{{\sqrt {\rm{2}} }}{\rm{cosn}}} \right)\sqrt {\rm{2}} \left( {{\rm{sinncos}}\frac{{\rm{\pi }}}{{\rm{4}}}{\rm{ + cosnsin}}\frac{{\rm{\pi }}}{{\rm{4}}}} \right){\rm{ = }}\sqrt {\rm{2}} {\rm{sin}}\left( {{\rm{n + }}\frac{{\rm{\pi }}}{{\rm{4}}}} \right)\]

\[\forall {\rm{n}} \in {\mathbb{N}^ * }\]ta có:

\[ - 1 \le \sin \left( {{\rm{n + }}\frac{{\rm{\pi }}}{{\rm{4}}}} \right) \le 1 \Leftrightarrow - \sqrt 2 \le \sqrt 2 \sin \left( {{\rm{n + }}\frac{{\rm{\pi }}}{{\rm{4}}}} \right) \le \sqrt 2 \]. Vậy (qn) bị chặn.

Vậy có 2 dãy số bị chặn.

Đáp án cần chọn là: C

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho dãy số (un) . Khẳng định nào sau đây đúng?

Lời giải

Nếu tồn tại số M > 0 sao cho

\[\left| {{{\rm{u}}_{\rm{n}}}} \right| \le {\rm{M, }}\forall {\rm{n}} \in {\mathbb{N}^ * }\left| {{u_n}} \right| \le M,\forall n \in {\mathbb{N}^ * } \Leftrightarrow - {\rm{M}} \le {{\rm{u}}_{\rm{n}}} \le {\rm{M}},\forall {\rm{n}} \in {\mathbb{N}^ * }\]

Vậy (un) là dãy số bị chặn.

Đáp án cần chọn là: A

Lời giải

\[{{\rm{u}}_{\rm{2}}}{\rm{ = 3}} - {{\rm{u}}_{\rm{1}}}{\rm{ = 3}} - {\rm{1 = 2}}\]

Đáp án cần chọn là: C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Trong các dãy số \[\left( {{{\rm{u}}_{\rm{n}}}} \right)\]cho bởi số hạng tổng quát un sau, dãy số nào  bị chặn trên:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho tổng \[{{\rm{S}}_{{\rm{n }}}}{\rm{ = }}\frac{{\rm{1}}}{{{\rm{1}}{\rm{.2}}}}{\rm{ + }}\frac{{\rm{1}}}{{{\rm{2}}{\rm{.3}}}}{\rm{ + }}\frac{{\rm{1}}}{{{\rm{3}}{\rm{.4}}}}{\rm{ + }}...{\rm{ + }}\frac{{\rm{1}}}{{{\rm{n}}{\rm{.}}\left( {{\rm{n + 1}}} \right)}}\]với\[{\rm{n}} \in {\mathbb{N}^ * }\].Lựa chọn đáp án đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho  dãy số (un), biết \[{{\rm{u}}_{{\rm{n }}}}{\rm{ = }}{\left( { - {\rm{1}}} \right)^{\rm{n}}}\]. Chọn khẳng định đúng trong các khẳng định sau đây?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay