Câu hỏi:

25/01/2025 74

Xét tính tăng, giảm và bị chặn của dãy số (un) biết: 

\[{{\rm{u}}_{{\rm{n }}}}{\rm{ = 1 + }}\frac{{\rm{1}}}{{{{\rm{2}}^{\rm{2}}}}}{\rm{ + }}\frac{{\rm{1}}}{{{{\rm{3}}^{\rm{2}}}}}{\rm{ + }}...{\rm{ + }}\frac{{\rm{1}}}{{{{\rm{n}}^{\rm{2}}}}}\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:\[{{\rm{u}}_{{\rm{n + 1 }}}}{\rm{ = 1 + }}\frac{{\rm{1}}}{{{{\rm{2}}^{\rm{2}}}}}{\rm{ + }}\frac{{\rm{1}}}{{{{\rm{3}}^{\rm{2}}}}}{\rm{ + }}...{\rm{ + }}\frac{{\rm{1}}}{{{{\rm{n}}^{\rm{2}}}}}{\rm{ + }}\frac{{\rm{1}}}{{{{\left( {{\rm{n + 1}}} \right)}^{\rm{2}}}}}\]

Xét hiệu:

\[{{\rm{u}}_{{\rm{n + 1}}}} - {{\rm{u}}_{{\rm{n }}}}{\rm{ = }}\left( {{\rm{1 + }}\frac{{\rm{1}}}{{{{\rm{2}}^{\rm{2}}}}}{\rm{ + }}\frac{{\rm{1}}}{{{{\rm{3}}^{\rm{2}}}}}{\rm{ + }}...{\rm{ + }}\frac{{\rm{1}}}{{{{\rm{n}}^{\rm{2}}}}}{\rm{ + }}\frac{{\rm{1}}}{{{{\left( {{\rm{n + 1}}} \right)}^{\rm{2}}}}}} \right) - \left( {{\rm{1 + }}\frac{{\rm{1}}}{{{{\rm{2}}^{\rm{2}}}}}{\rm{ + }}\frac{{\rm{1}}}{{{{\rm{3}}^{\rm{2}}}}}{\rm{ + }}...{\rm{ + }}\frac{{\rm{1}}}{{{{\rm{n}}^{\rm{2}}}}}} \right){\rm{ }}\]

\[{\rm{ = }}\frac{{\rm{1}}}{{{{\left( {{\rm{n + 1}}} \right)}^{\rm{2}}}}}{\rm{ > 0}},\forall {\rm{n}} \in {\mathbb{N}^ * }\]

Vậy \[{{\rm{u}}_{{\rm{n + 1 }}}} - {{\rm{u}}_{{\rm{n }}}}{\rm{ > 0}} \Leftrightarrow {{\rm{u}}_{{\rm{n + 1 }}}}{\rm{ > }}{{\rm{u}}_{\rm{n}}}\]. Vậy dãy số (un) là dãy số tăng.

\[{{\rm{u}}_{{\rm{n }}}}{\rm{ = 1 + }}\frac{{\rm{1}}}{{{{\rm{2}}^{\rm{2}}}}}{\rm{ + }}\frac{{\rm{1}}}{{{{\rm{3}}^{\rm{2}}}}}{\rm{ + }}...{\rm{ + }}\frac{{\rm{1}}}{{{{\rm{n}}^{\rm{2}}}}}{\rm{ < 1 + }}\frac{{\rm{1}}}{{{\rm{1}}{\rm{.2}}}}{\rm{ + }}\frac{{\rm{1}}}{{{\rm{2}}{\rm{.3}}}}{\rm{ + }}...{\rm{ + }}\frac{{\rm{1}}}{{\left( {{\rm{n}} - 1} \right){\rm{n}}}}{\rm{ }}\]

\[{\rm{ = 1 + 1}} - \frac{{\rm{1}}}{{\rm{n}}}{\rm{ = 2}} - \frac{{\rm{1}}}{{\rm{n}}}{\rm{ < 2}},\forall {\rm{n}} \in {\mathbb{N}^ * }\]

Vậy (un) bị chặn trên.

\[{{\rm{u}}_{{\rm{n }}}}{\rm{ = 1 + }}\frac{{\rm{1}}}{{{{\rm{2}}^{\rm{2}}}}}{\rm{ + }}\frac{{\rm{1}}}{{{{\rm{3}}^{\rm{2}}}}}{\rm{ + }}...{\rm{ + }}\frac{{\rm{1}}}{{{{\rm{n}}^{\rm{2}}}}}{\rm{ > }}\frac{{\rm{1}}}{{{\rm{1}}{\rm{.2}}}}{\rm{ + }}\frac{{\rm{1}}}{{{\rm{2}}{\rm{.3}}}}{\rm{ + }}\frac{{\rm{1}}}{{{\rm{3}}{\rm{.4}}}}{\rm{ + }}...{\rm{ + }}\frac{{\rm{1}}}{{{\rm{n}}\left( {{\rm{n + 1}}} \right)}}{\rm{ }}\]

\[{\rm{ = 1}} - \frac{{\rm{1}}}{{{\rm{n + 1}}}}{\rm{ = }}\frac{{{\rm{n + 1}} - {\rm{1}}}}{{{\rm{n + 1}}}}{\rm{ = }}\frac{{\rm{n}}}{{{\rm{n + 1}}}}{\rm{ > 0}},\forall {\rm{n}} \in {\mathbb{N}^ * }\]

Vậy (un) bị chặn dưới.

Ta thấy dãy số (un) bị chặn trên và bị chặn dưới nên dãy số (un) bị chặn.

Vậy dãy số (un) tăng, bị chặn.

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Nếu tồn tại số M > 0 sao cho

\[\left| {{{\rm{u}}_{\rm{n}}}} \right| \le {\rm{M, }}\forall {\rm{n}} \in {\mathbb{N}^ * }\left| {{u_n}} \right| \le M,\forall n \in {\mathbb{N}^ * } \Leftrightarrow - {\rm{M}} \le {{\rm{u}}_{\rm{n}}} \le {\rm{M}},\forall {\rm{n}} \in {\mathbb{N}^ * }\]

Vậy (un) là dãy số bị chặn.

Đáp án cần chọn là: A

Câu 2

Lời giải

Với\[{{\rm{u}}_{\rm{n}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{n}}}\]ta có:\[{\rm{n}} \ge 1 \Leftrightarrow \frac{{\rm{1}}}{{\rm{n}}} \le 1\]

Vậy (un) bị chặn trên.

Đáp án cần chọn là: D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP