Câu hỏi:

25/01/2025 180 Lưu

Với giá trị nào của a thì dãy số \[\left( {{{\rm{u}}_{\rm{n}}}} \right)\]với \[{{\rm{u}}_{\rm{n}}}{\rm{ = }}\frac{{{\rm{an}} - {\rm{1}}}}{{{\rm{n + 2}}}},\forall {\rm{n}} \in {\mathbb{N}^ * }\] là dãy số tăng?

A. a > 2

B. \[{\rm{a}} > - \frac{1}{2}\]

C. \[{\rm{a < }} - \frac{1}{2}\]

</>

D. a < 2

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có:\[{{\rm{u}}_{{\rm{n + 1}}}}{\rm{ = }}\frac{{{\rm{a}}\left( {{\rm{n + 1}}} \right) - {\rm{1}}}}{{\left( {{\rm{n + 1}}} \right){\rm{ + 2}}}}{\rm{ = }}\frac{{{\rm{na + a}} - {\rm{1}}}}{{{\rm{n + 1 + 2}}}}{\rm{ = }}\frac{{{\rm{na + a}} - {\rm{1}}}}{{{\rm{n + 3}}}}\]

Xét hiệu:

\[{u_{n + 1}} - {u_n}{\rm{ = }}\frac{{na + a - 1}}{{n + 3}} - \frac{{na - 1}}{{n + 2}}{\rm{ = }}\frac{{\left( {na + a - 1} \right)\left( {n + 2} \right) - \left( {na - 1} \right)\left( {n + 3} \right)}}{{\left( {n + 3} \right)\left( {n + 2} \right)}}\]

\({\rm{ = }}\frac{{\left( {{n^2}a + na - n + 2na + 2a - 2} \right) - \left( {{n^2}a - n + 3na - 3} \right)}}{{\left( {n + 3} \right)\left( {n + 2} \right)}}\)

\({\rm{ = }}\frac{{{n^2}a + na - n + 2na + 2a - 2 - {n^2}a + n - 3na + 3}}{{\left( {n + 3} \right)\left( {n + 2} \right)}}{\rm{ = }}\frac{{2a + 1}}{{\left( {n + 3} \right)\left( {n + 2} \right)}}\)

Để \[\left( {{{\rm{u}}_{\rm{n}}}} \right)\]là dãy số tăng thì:

\[{{\rm{u}}_{{\rm{n + 1}}}} - {{\rm{u}}_{\rm{n}}} > 0,\forall {\rm{n}} \in {\mathbb{N}^ * } \Leftrightarrow \frac{{2{\rm{a}} + 1}}{{\left( {{\rm{n + 3}}} \right)\left( {{\rm{n + 2}}} \right)}} > 0 \Leftrightarrow 2{\rm{a}} + 1 > 0 \Leftrightarrow {\rm{a}} > - \frac{1}{2}\]Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[{{\rm{u}}_{\rm{n}}}{\rm{ = }}{{\rm{2}}^{\rm{n}}}\]

B. \[{{\rm{u}}_{\rm{n}}}{\rm{ = }}{{\rm{n}}^{\rm{2}}}\]

C. \[{{\rm{u}}_{\rm{n}}}{\rm{ = }}\sqrt {{\rm{n + 1}}} \]

D. \[{{\rm{u}}_{\rm{n}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{n}}}\]

Lời giải

Với\[{{\rm{u}}_{\rm{n}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{n}}}\]ta có:\[{\rm{n}} \ge 1 \Leftrightarrow \frac{{\rm{1}}}{{\rm{n}}} \le 1\]

Vậy (un) bị chặn trên.

Đáp án cần chọn là: D

Câu 2

A. Nếu tồn tại số M > 0 sao cho \[\left| {{{\rm{u}}_{\rm{n}}}} \right| \le {\rm{M, }}\forall {\rm{n}} \in {\mathbb{N}^ * }\] thì (un) là dãy số bị chặn.

B. Nếu tồn tại cặp số M, m và tồn tại giá trị n sao cho \[m \le {u_n} \le M\] thì (un) là dãy số bị chặn.

C. Nếu tồn tại số m sao cho \[{{\rm{u}}_{\rm{n}}} \ge {\rm{m}},\forall {\rm{n}} \in {\mathbb{N}^ * }\] thì (un) là dãy số bị chặn.

D. Nếu tồn tại số M sao cho \[{{\rm{u}}_{\rm{n}}} \le {\rm{M}},\forall {\rm{n}} \in {\mathbb{N}^ * }\] thì (un) là dãy số bị chặn.

Lời giải

Nếu tồn tại số M > 0 sao cho

\[\left| {{{\rm{u}}_{\rm{n}}}} \right| \le {\rm{M, }}\forall {\rm{n}} \in {\mathbb{N}^ * }\left| {{u_n}} \right| \le M,\forall n \in {\mathbb{N}^ * } \Leftrightarrow - {\rm{M}} \le {{\rm{u}}_{\rm{n}}} \le {\rm{M}},\forall {\rm{n}} \in {\mathbb{N}^ * }\]

Vậy (un) là dãy số bị chặn.

Đáp án cần chọn là: A

Câu 3

A. \[{{\rm{S}}_{{\rm{2 }}}}{\rm{ = }}\frac{{\rm{2}}}{{\rm{3}}}\]
B. \[{{\rm{S}}_{{\rm{2 }}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{6}}}\]
C. \[{{\rm{S}}_{{\rm{3 }}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{4}}}\]
D. \[{{\rm{S}}_{{\rm{3 }}}}{\rm{ = }}\frac{{\rm{1}}}{{{\rm{12}}}}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Dãy (un) bị chặn.

B. Dãy (un) tăng.

C. Dãy (un) giảm.

D. Dãy (un) có \[{{\rm{u}}_{{\rm{30 }}}}{\rm{ = 30}}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP