Câu hỏi:

05/02/2025 877

Cho hai điểm \(A\left( {3; - 3} \right),B\left( { - 1; - 5} \right)\) và đường thẳng \(\left( d \right):4x - 3y - 2 = 0\).

a) Một vectơ pháp tuyến của đường thẳng \(d\)\(\overrightarrow {{n_d}} = \left( {4; - 3} \right)\).

b) Ta có \(\overrightarrow {OA} = 3\overrightarrow j - 3\overrightarrow i \).

c) Khoảng cách từ \(A\) tới \(\left( d \right)\) nhỏ hơn khoảng cách từ \(B\) tới \(\left( d \right)\).

d) Cosin của góc tạo bởi \(\left( d \right)\) và đường thẳng \(AB\) bằng \(\frac{2}{{\sqrt 5 }}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đ, b) S, c) Đ, d) Đ

a) Ta có \(\overrightarrow {{n_d}} = \left( {4; - 3} \right)\).

b) \(\overrightarrow {OA} = 3\overrightarrow i - 3\overrightarrow j \).

c) Ta có \(d\left( {A,d} \right) = \frac{{\left| {4.3 - 3.\left( { - 3} \right) - 2} \right|}}{{\sqrt {{4^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{19}}{5}\).

Ta có \(d\left( {B,d} \right) = \frac{{\left| {3.\left( { - 1} \right) + 4.\left( { - 5} \right) + 3} \right|}}{{\sqrt {{3^2} + {4^2}} }} = \frac{{20}}{5}\).

\(\frac{{19}}{5} < \frac{{20}}{5}\) nên \(d\left( {A,d} \right) < d\left( {B,d} \right)\).

d) Ta có \(\overrightarrow {AB} = \left( { - 4; - 2} \right) = - 2\left( {2;1} \right)\).

Đường thẳng \(AB\) nhận \(\overrightarrow n = \left( { - 1;2} \right)\) làm vectơ pháp tuyến của đường thẳng \(AB\).

Gọi \(\varphi \) là góc giữa hai đường thẳng.

Ta có \[\cos \varphi = \left| {\cos \left( {\overrightarrow {{n_d}} ,\overrightarrow n } \right)} \right| = \frac{{\left| {4.\left( { - 1} \right) + \left( { - 3} \right).2} \right|}}{{\sqrt {{4^2} + {{\left( { - 3} \right)}^2}} .\sqrt {{{\left( { - 1} \right)}^2} + {2^2}} }} = \frac{{10}}{{5\sqrt 5 }} = \frac{2}{{\sqrt 5 }}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

TH1: Từ thành phố A đến thành phố B có 2 con đường, từ thành phố B đến thành phố C có 3 con đường, từ thành phố C đến thành phố D có 4 con đường.

Suy ra số cách đi từ thành phố A đến thành phố D là \(2.3.4 = 24\) cách.

TH2: Từ thành phố A đến thành phố B có 2 con đường, từ thành phố B đến thành phố D có 3 con đường.

Suy ra số cách đi từ thành phố A đến thành phố D là \(2.3 = 6\) cách.

Vậy số cách đi khác nhau từ thành phố A đến D là \(24 + 6 = 30\) cách.

Câu 2

Lời giải

Đáp án đúng là: B

Ta có \(\overrightarrow {{n_1}} = \left( {1; - 3} \right),\overrightarrow {{n_2}} = \left( {1;2} \right)\) lần lượt là vectơ pháp tuyến của đường thẳng \({d_1},{d_2}\).

Khi đó \(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {1.1 + \left( { - 3} \right).2} \right|}}{{\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} .\sqrt {{1^2} + {2^2}} }} = \frac{5}{{5\sqrt 2 }} = \frac{1}{{\sqrt 2 }} \Rightarrow \left( {{d_1},{d_2}} \right) = 45^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP