Câu hỏi:

05/02/2025 97

Trên màn hình ra đa của đài kiểm soát không lưu (được coi như mặt phẳng tọa độ \(Oxy\) với đơn vị trên các trục tính theo kilômét), một máy bay trực thăng chuyển động thẳng đều từ thành phố A có tọa độ (600; 200) đến thành phố B có tọa độ (200; 500) và thời gian bay quãng đường AB là 3 giờ. Hãy tìm tung độ của máy bay trực thăng tại thời điểm sau khi xuất phát 1 giờ.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trả lời: 300

Giả sử sau 1 giờ, máy bay tại vị trí điểm \(C\left( {x;y} \right)\).

Vì máy bay chuyển động thẳng đều nên A, B, C thẳng hàng nên \(\overrightarrow {AB} ,\overrightarrow {AC} \) cùng hướng.

Máy bay bay từ A đến B hết 3 giờ.

Máy bay bay từ A đến C hết 1 giờ.

Do vận tốc không đổi nên AB = 3AC \( \Rightarrow \overrightarrow {AB} = 3\overrightarrow {AC} \).

Ta có \(\overrightarrow {AB} = \left( { - 400;300} \right),\overrightarrow {AC} = \left( {x - 600;y - 200} \right)\).

\(\overrightarrow {AB} = 3\overrightarrow {AC} \) nên \(\left\{ \begin{array}{l} - 400 = 3\left( {x - 600} \right)\\300 = 3\left( {y - 200} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{1400}}{3}\\y = 300\end{array} \right.\).

Vậy \(C\left( {\frac{{1400}}{3};300} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

TH1: Từ thành phố A đến thành phố B có 2 con đường, từ thành phố B đến thành phố C có 3 con đường, từ thành phố C đến thành phố D có 4 con đường.

Suy ra số cách đi từ thành phố A đến thành phố D là \(2.3.4 = 24\) cách.

TH2: Từ thành phố A đến thành phố B có 2 con đường, từ thành phố B đến thành phố D có 3 con đường.

Suy ra số cách đi từ thành phố A đến thành phố D là \(2.3 = 6\) cách.

Vậy số cách đi khác nhau từ thành phố A đến D là \(24 + 6 = 30\) cách.

Câu 2

Lời giải

Đáp án đúng là: B

Ta có \(\overrightarrow {{n_1}} = \left( {1; - 3} \right),\overrightarrow {{n_2}} = \left( {1;2} \right)\) lần lượt là vectơ pháp tuyến của đường thẳng \({d_1},{d_2}\).

Khi đó \(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {1.1 + \left( { - 3} \right).2} \right|}}{{\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} .\sqrt {{1^2} + {2^2}} }} = \frac{5}{{5\sqrt 2 }} = \frac{1}{{\sqrt 2 }} \Rightarrow \left( {{d_1},{d_2}} \right) = 45^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP