Câu hỏi:
05/02/2025 160
Cho tập hợp \(A = \{ 0;1;2;3;4;5\} \). Có thể lập được bao nhiêu số tự nhiên chã̃n có bốn chữ số khác nhau?
Cho tập hợp \(A = \{ 0;1;2;3;4;5\} \). Có thể lập được bao nhiêu số tự nhiên chã̃n có bốn chữ số khác nhau?
Quảng cáo
Trả lời:
Gọi số tự nhiên có bốn chữ số là \(\overline {abcd} \).
Trường hợp 1: \(d = 0\).
Chọn \(d\): có 1 cách. Chọn \(a(a \ne 0)\): có 5 cách.
Số cách chọn \(b,c\) lần lượt là 4, 3.
Số các số tự nhiên trong trường hợp này là .
Trường hợp 2: .\(1.5.4.3 = 60\)
Chọn \(d\): có 2 cách. Chọn \(a(a \ne 0,a \ne d)\): có 4 cách.
Số cách chọn \(b,c\) lần lượt là 4, 3.
Số các số tự nhiên trong trường hợp này là \(2.4.4.3 = 96\).
Vậy số các số tự nhiên thỏa mãn đề bài là \(60 + 96 = 156\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đ, b) S, c) Đ, d) Đ
a) Chọn nhóm 6 bạn bất kỳ ta có \(C_{14}^6\) cách.
b) Chọn nhóm 6 bạn trong đó có cả \(A\) và \(B\), có \(C_{12}^4\) cách.
c) Chọn nhóm 6 bạn trong đó không có hai bạn \(A\) và \(B\), có \(C_{12}^6 = 924\) cách.
d) Suy ra số cách chọn 6 bạn có mặt \(A,B\) nhưng không đồng thời có mặt cả hai người trong tổ là: \(C_{14}^6 - C_{12}^4 - C_{12}^6 = 1584\) cách,
Chọn 1 tổ trưởng từ nhóm 6 bạn này, có 6 cách.
Vậy có \(1584.6 = 9504\) cách chọn thỏa yêu câu đề.
Lời giải
Ta có \(\overrightarrow {AB} = \left( {3; - 2} \right)\). Suy ra \(AB = \sqrt {{3^2} + {{\left( { - 2} \right)}^2}} = \sqrt {13} \).
Vì \({S_{ABCD}} = DH.AB \Rightarrow DH = \frac{2}{{\sqrt {13} }}\).

Giả sử \(I\left( {a; - a} \right)\).
Mà \(I\) là trung điểm của \(BD\) nên \(D\left( {2a - 3; - 2a} \right)\).
Đường thẳng \(AB\) đi qua \(A\left( {0;2} \right)\) có vectơ chỉ phương \(\overrightarrow {AB} = \left( {3; - 2} \right)\) nên nhận \(\overrightarrow n = \left( {2;3} \right)\) làm vectơ pháp tuyến có phương trình là \(2x + 3\left( {y - 2} \right) = 0 \Leftrightarrow 2x + 3y - 6 = 0\).
Lại có \(DH = d\left( {D,AB} \right) = \frac{{\left| {2.\left( {2a - 3} \right) + 3.\left( { - 2a} \right) - 6} \right|}}{{\sqrt {{2^2} + {3^2}} }} = \frac{{\left| { - 2a - 12} \right|}}{{\sqrt {13} }} = \frac{2}{{\sqrt {13} }}\).
Từ đó ta có \(\left[ \begin{array}{l}a + 6 = 1\\a + 6 = - 1\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}a = - 5\\a = - 7\end{array} \right.\)\( \Rightarrow \left[ \begin{array}{l}D\left( { - 13;10} \right)\\D\left( { - 17;14} \right)\end{array} \right.\).
Vì \({x_D} > - 14\) nên \(D\left( { - 13;10} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.