Cho đường tròn tâm
đường kính
Hai dây cung
và
cắt nhau tại
nằm bên trong đường tròn
Vẽ
vuông góc với
tại
Chứng minh rằng:
Điểm
là tâm đường tròn nội tiếp tam giác
Quảng cáo
Trả lời:

Chứng minh tương tự câu 2, ta có
là tia phân giác của ![]()
Xét
có
là hai đường phân giác của tam giác cắt nhau tại
nên
là giao điểm ba đường phân giác của tam giác này.
Do đó
là tâm đường tròn nội tiếp tam giác ![]()
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. b) Sai. c) Sai. d) Đúng.
|
⦁ Vì điểm ⦁ Đường tròn ⦁ Khi điểm |
![]() |
giác nội tiếp. Suy ra
(tổng hai góc đối nhau của tứ giác nội tiếp).
Nên
Do đó ý c) là sai.
⦁ Xét
vuông tại
ta có: ![]()
Suy ra ![]()
Mà đường tròn
đi qua các điểm
nên đường tròn
ngoại tiếp tam giác ![]()
Khi đó bán kính đường tròn ngoại tiếp
là ![]()
Lời giải
Xét phương trình ![]()
Ta có ![]()
![]()
![]()
với mọi
.
Do đó, phương trình luôn có nghiệm với mọi
.
Vì
với mọi
nên ta có phương trình
luôn có hai nghiệm là: ![]()
Trường hợp 1: ![]()
Mà
nên
hay
.
Theo bài, ![]()
![]()
![]()
hoặc ![]()
(không thỏa mãn) hoặc
(thỏa mãn).
Trường hợp 2: ![]()
Mà
nên
hay
.
Theo bài, ![]()
![]()
![]()
(vô lí vì ![]()
Vậy
thỏa mãn yêu cầu đề bài.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
