Câu hỏi:
10/03/2025 289Động đất hay địa chấn là sự rung chuyển trên bề mặt Trái Đất do kết quả của sự giải phóng năng lượng bất ngờ ở lớp vỏ Trái Đất và phái sinh ra sóng địa chấn (theo Wikipedia).
Ngày 6/2/2023, một trận động đất cường độ 7,8 độ richter có tâm chấn tại Thổ Nhĩ Kì được mô tả bởi tâm \(I\) của đường tròn tác động \(\left( C \right)\) trong mặt phẳng tọa độ \(Oxy\) (đơn vị trên hai trục tọa độ là km). Biết rằng đường tròn tác động \(\left( C \right)\) đi qua hai thành phố Kahramamaras và Nurdagi được mô tả bởi hai điểm \(K\left( { - 3;10} \right)\) và \(N\left( {8;0} \right)\); tâm chấn \(I\) có hoành độ dương và cách thành phố Aleppo của Syria được mô tả bởi điểm \(G\left( {9; - \frac{{17}}{4}} \right)\) là \(4\sqrt {10} \) km. Tìm bán kính (km) của đường tròn \(\left( C \right)\) (kết quả làm tròn đến hàng phần trăm).
Quảng cáo
Trả lời:
Hướng dẫn giải
Giả sử đường tròn tác động \(\left( C \right)\) có phương trình: \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(I\left( {a;b} \right)\).
Vì \(\left( C \right)\) đi qua hai điểm \(K\left( { - 3;10} \right)\) và \(N\left( {8;0} \right)\) nên ta có \(\left\{ \begin{array}{l}6a - 20b + c = - 109\\ - 16a + c = - 64\end{array} \right.\) (1).
Lại có \(IG = 4\sqrt {10} \) nên \({\left( {9 - a} \right)^2} + {\left( { - \frac{{17}}{4} - b} \right)^2} = 160\) (2).
Từ \(\left\{ \begin{array}{l}6a - 20b + c = - 109\\ - 16a + c = - 64\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{c + 64}}{{16}}\\b = \frac{{11c}}{{160}} + \frac{{133}}{{20}}\end{array} \right.\) thay vào (2), ta được
\[{\left( {9 - \frac{{c + 64}}{{16}}} \right)^2} + {\left( { - \frac{{17}}{4} - \frac{{11c}}{{160}} - \frac{{133}}{{20}}} \right)^2} = 160\]\( \Leftrightarrow {\left( {5 - \frac{c}{{16}}} \right)^2} + {\left( {\frac{{109}}{{10}} + \frac{{11c}}{{160}}} \right)^2} = 160\)
\( \Leftrightarrow 25 - \frac{{10}}{{16}}c + \frac{{{c^2}}}{{256}} + \frac{{11881}}{{100}} + \frac{{1199}}{{800}}c + \frac{{121}}{{25600}}{c^2} = 160\)\( \Leftrightarrow \frac{{221}}{{25600}}{c^2} + \frac{{699}}{{800}}c - \frac{{1619}}{{100}} = 0\)
\( \Leftrightarrow c = 16\) hoặc \(c = \frac{{ - 25904}}{{221}}\).
Vì \(I\) có hoành độ dương nên \(c = 16\). Suy ra \(\left\{ \begin{array}{l}a = 5\\b = \frac{{31}}{4}\end{array} \right.\).
Do đó bán kính của đường tròn \(\left( C \right)\) là \(R = \sqrt {{5^2} + {{\left( {\frac{{31}}{4}} \right)}^2} - 16} \approx 8,31\) km.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Đ, b) Đ, c) S, d) Đ
a) Số phần tử của không gian mẫu bằng \(C_{12}^5\).
b) Để lấy được 5 viên bi cùng màu thì 5 viên bi lấy được có màu xanh.
Do đó số phần tử của biến cố “5 viên bi lấy ra cùng màu” là \(C_6^5\).
c) Xác suất của biến cố “5 viên bi lấy ra không có bi vàng” là \(P = \frac{{C_{10}^5}}{{C_{12}^5}} = \frac{7}{{22}}\).
d) Xác suất của biến cố “5 viên bi lấy ra có ít nhất một bi vàng” là \(P = 1 - \frac{7}{{22}} = \frac{{15}}{{22}}\).
Lời giải
Hướng dẫn giải
Trả lời: 303
Cửa hàng có lợi nhuận khi \(y = - 86{x^2} + 86000x - 18146000 > 0\)\( \Leftrightarrow 302,52 < x < 697,48\).
Do đó cửa hàng bán tối thiểu 303 lít xăng thì có lợi nhuận.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.