Câu hỏi:

13/03/2025 71

Cho \(a,\,\,b,\,\,c\) là các số thực thỏa mãn \(a + b + c - 21 = 2\left( {\sqrt {a - 7} + \sqrt {b - 8} + \sqrt {c - 9} } \right)\). Giá trị của biểu thức \(S = a + 2b - c\) 

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Với \(a \ge 7,\,\,b \ge 8,\,\,c \ge 9,\) ta có:

\(a + b + c - 21 = 2\left( {\sqrt {a - 7} + \sqrt {b - 8} + \sqrt {c - 9} } \right)\)

\(a + b + c - 21 = 2\sqrt {a - 7} + 2\sqrt {b - 8} + 2\sqrt {c - 9} \)

\(\left( {a - 7 - 2\sqrt {a - 7} + 1} \right) + \left( {b - 8 - 2\sqrt {b - 8} + 1} \right) + \left( {c - 9 - 2\sqrt {c - 9} + 1} \right) = 0\)

\({\left( {\sqrt {a - 7} - 1} \right)^2} + {\left( {\sqrt {b - 8} - 1} \right)^2} + {\left( {\sqrt {c - 9} - 1} \right)^2} = 0\,\,\,\left( * \right)\)

\({\left( {\sqrt {a - 7} - 1} \right)^2} \ge 0,\,\,{\left( {\sqrt {b - 8} - 1} \right)^2} \ge 0,\,\,{\left( {\sqrt {c - 9} - 1} \right)^2} \ge 0\) với mọi \(a \ge 7,\,\,b \ge 8,\,\,c \ge 9.\)

Khi đó từ * suy ra a712=0,  b812=0,  c912=0

Suy ra \[\sqrt {a - 7} - 1 = 0,\,\,\sqrt {b - 8} - 1 = 0,\,\,\sqrt {c - 9} - 1 = 0\]

Do đó \[a - 7 = 1,\,\,b - 8 = 1,\,\,c - 9 = 1\]

Nên \(a = 8,\,\,b = 9,\,\,c = 10\) (thỏa mãn).

Vậy \(S = a + 2b - c = 8 + 2 \cdot 9 - 10 = 16.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giao điểm của parabol \(y = {x^2}\) và đường thẳng \(y = x + 2\) cùng với gốc tọa độ tạo thành tam giác có diện tích bằng          

Xem đáp án » 12/03/2025 1,217

Câu 2:

Bán kính đường tròn ngoại tiếp tam giác đều cạnh 6 cm là         

Xem đáp án » 12/03/2025 473

Câu 3:

Hình nón có chiều cao bằng 12 cm, bán kính đáy bằng 9 cm thì diện tích xung quanh là          

Xem đáp án » 12/03/2025 455

Câu 4:

Bạn Bắc gieo một con xúc xắc 50 lần cho kết quả như sau:

Số chấm xuất hiện

1

2

3

4

5

6

Tần số

8

7

10

8

6

11

Tần số xuất hiện mặt 3 chấm là          

Xem đáp án » 12/03/2025 404

Câu 5:

Trong các phương trình bậc hai sau phương trình nào có tổng hai nghiệm bằng 3?          

Xem đáp án » 12/03/2025 378

Câu 6:

1) Cho \(a,\,\,b,\,\,c\) là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức\(P = \frac{{3\left( {b + c} \right)}}{{2a}} + \frac{{4a + 3c}}{{3b}} + \frac{{12\left( {b - c} \right)}}{{2a + 3c}}.\)

Xem đáp án » 12/03/2025 300

Câu 7:

Biểu thức \(\sqrt[3]{{x - 1}}\) có điều kiện xác định là          

Xem đáp án » 12/03/2025 298
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua