Câu hỏi:
12/03/2025 272(1,0 điểm) Một gia đình có bốn người lớn và ba trẻ em mua vé xem xiếc hết 370 000 đồng. Một gia đình khác có hai người lớn và hai trẻ em cũng mua vé xem xiếc tại rạp đó hết 200 000 đồng. Hỏi giá bán từng loại vé cho người lớn và trẻ em là bao nhiêu? Biết rằng rạp bán hai hạng vé: người lớn và trẻ em, mỗi người vào xem đều phải mua một vé đúng hạng.
Quảng cáo
Trả lời:
Gọi \(x,\,\,y\) (nghìn đồng) lần lượt là giá vé cho người lớn và trẻ em \(\left( {x,\,\,y > 0} \right).\)
Bốn người lớn và ba trẻ em mua vé xem xiếc hết 370 000 đồng nên ta có phương trình:
\(4x + 3y = 370.\) (1)
Hai người lớn và hai trẻ em mua vé xem xiếc hết 200 000 đồng nên ta có phương trình:
\(2x + 2y = 200\) hay \(x + y = 100.\) (2)
Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}4x + 3y = 370\,\,\,\,\left( 1 \right)\\x + y = 100\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
Nhân hai vế của phương trình (2) với 3, ta được hệ phương trình mới \(\left\{ \begin{array}{l}4x + 3y = 370\\3x + 3y = 300.\end{array} \right.\)
Trừ từng vế của phương trình thứ nhất cho phương trình thứ hai của hệ trên, ta được:
\(x = 70\) (thỏa mãn).
Thay \[x = 70\] vào phương trình \(\left( 2 \right),\) ta được: \(70 + y = 100,\) suy ra \(y = 30\) (thỏa mãn).
Vậy giá vé của người lớn là \(70\,\,000\) đồng và giá vé của trẻ em là \(30\,\,000\) đồng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải Đáp án đúng là: D Phương trình hoành độ giao điểm của parabol \(y = {x^2}\) và đường thẳng \(y = x + 2\) là: \({x^2} = x + 2\) \({x^2} - x - 2 = 0\) \(\left( {{x^2} + x} \right) - \left( {2x + 2} \right) = 0\) |
|
\(x\left( {x + 1} \right) - 2\left( {x + 1} \right) = 0\)
\(\left( {x + 1} \right)\left( {x - 2} \right) = 0\)
\(x + 1 = 0\) hoặc \(x - 2 = 0\)
\(x = - 1\) hoặc \(x = 2.\)
Thay \(x = - 1\) vào hàm số \(y = {x^2},\) ta được \(y = {\left( { - 1} \right)^2} = 1.\)
Thay \(x = 2\) vào hàm số \(y = {x^2},\) ta được \(y = {2^2} = 4.\)
Như vậy, đường thẳng \(y = x + 2\) cắt parabol \(y = {x^2}\) tại hai điểm \(A\left( { - 1;\,\,1} \right)\) và \(B\left( {2;\,\,4} \right).\)
Gọi giao điểm của đường thẳng \(y = x + 2\) với trục tung là \(I\left( {0;\,\,2} \right).\) Suy ra \(OI = \left| 2 \right| = 2.\)
Gọi hình chiếu của \(A\left( { - 1;\,\,1} \right),\,\,B\left( {2;\,\,4} \right)\) lên trục tung lần lượt là \(H\left( {0;\,\,1} \right)\) và \(K\left( {0;\,\,4} \right).\)
Suy ra \(AH = \left| { - 1} \right| = 1;\,\,BK = \left| 2 \right| = 2.\)
Ta có: \({S_{\Delta OAI}} = \frac{1}{2} \cdot AH \cdot OI = \frac{1}{2} \cdot 1 \cdot 2 = 1\) (đơn vị diện tích);
\[{S_{\Delta OBI}} = \frac{1}{2} \cdot BK \cdot OI = \frac{1}{2} \cdot 2 \cdot 2 = 2\] (đơn vị diện tích).
Vậy diện tích của tam giác \(OAB\) là: \({S_{\Delta OAB}} = {S_{\Delta OAI}} + {S_{\Delta OBI}} = 1 + 2 = 3\) (đơn vị diện tích).
Lời giải
Đáp án đúng là: D
Bán kính đường tròn ngoại tiếp tam giác đều cạnh 6 cm là \(\frac{{6 \cdot \sqrt 3 }}{3} = 2\sqrt 3 {\rm{\;(cm)}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
123 bài tập Nón trụ cầu và hình khối có lời giải
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
50 bài tập Một số yếu tố xác suất có lời giải
Đề thi tham khảo môn Toán vào 10 tỉnh Quảng Bình năm học 2025-2026
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_TP Hà Nội
Đề thi tham khảo TS vào 10 năm học 2025 - 2026_Môn Toán_TP Phú Thọ
54 bài tập Hàm số bậc hai và giải bài toán bằng cách lập phương trình có lời giải
Đề thi thử TS vào 10 (Lần 2 - Tháng 2) năm học 2025 - 2026_Môn Toán_THCS Hoằng Thanh_Tỉnh Thanh Hóa