Câu hỏi:

12/03/2025 303

Câu 37-39: (2,0 điểm) Cho tứ giác \(ABCD\) nội tiếp đường tròn tâm \(O\) đường kính \(AD.\) Gọi \(H\) là giao điểm của \(AC\)\(BD,\) kẻ \(HK \bot AD\,\,\left( {K \in AD} \right).\)

1) Chứng minh tứ giác \(CDKH\) nội tiếp.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1) Chứng minh tứ giác \(CDKH\) nội tiếp. (ảnh 1)

Xét đường tròn \(\left( O \right)\) đường kính \(AD\)\[\widehat {ACD} = 90^\circ \] (góc nội tiếp chắn nửa đường tròn) hay \(\Delta HCD\) vuông tại \(C.\)

Suy ra ba điểm \(H,\,\,C,\,\,D\) cùng nằm trên đường tròn đường kính \(HD.\)

Ta có \(\widehat {HKD} = 90^\circ \) nên ba điểm \(H,\,\,K,\,\,D\) cùng nằm trên đường tròn đường kính \(HD.\)

Do đó, bốn điểm \(C,\,\,D,\,\,K,\,\,H\) cùng nằm trên đường tròn đường kính \(HD.\)

Vậy tứ giác \(CDKH\) nội tiếp đường tròn đường kính \(HD.\)

Câu hỏi cùng đoạn

Câu 2:

2) Gọi \(M\) là giao điểm của \(AB\)\[CD.\] Chứng minh ba điểm \(M,H,K\) thẳng hàng.

Xem lời giải

verified Lời giải của GV VietJack

\(\widehat {HCD} = 90^\circ \) nên \(\widehat {HCM} = 90^\circ ,\) suy ra ba điểm \(H,\,\,C,\,\,M\) cùng nằm trên đường tròn đường kính \(HM.\)

Tương tự, ta có ba điểm \(H,\,\,B,\,\,M\) cùng nằm trên đường tròn đường kính \(HM.\)

Do đó, bốn điểm \(H,\,\,B,\,\,M,\,\,C\) cùng nằm trên đường tròn đường kính \(HM.\)

Như vậy, tứ giác \(HBMC\) nội tiếp đường tròn đường kính \(HM.\)

Suy ra \(\widehat {MHC} = \widehat {MBC}\) (hai góc nội tiếp cùng chắn cung \(MC).\)   (1)

Do tứ giác \(ABCD\) nội tiếp đường tròn \(\left( O \right)\) nên \[\widehat {CBA} + \widehat {ADC} = 180^\circ \] (tổng hai góc đối nhau)

Tứ giác \(CDKH\) nội tiếp đường tròn đường kính \(HD\) nên \(\widehat {CHK} + \widehat {KDC} = 180^\circ \) (tổng hai góc đối nhau) hay \[\widehat {CHK} + \widehat {ADC} = 180^\circ \].

Suy ra \[\widehat {CBA} = \widehat {CHK}.\]

Lại có \[\widehat {MBC} + \widehat {CBA} = 180^\circ \] (hai góc kề bù) nên \[\widehat {MBC} + \widehat {CHK} = 180^\circ \] (2)

Từ (1) và (2) suy ra \[\widehat {MHC} + \widehat {CHK} = 180^\circ \] hay \(\widehat {MHK} = 180^\circ .\)

Do đó ba điểm \(M,\,\,H,\,\,K\) thẳng hàng.

Câu 3:

3) Gọi \(N\) là giao điểm của \(CK\)\(BD.\) Chứng minh rằng \(BD \cdot HN = DN \cdot HB.\)

Xem lời giải

verified Lời giải của GV VietJack

Tứ giác \(CDKH\) nội tiếp nên \(\widehat {HCK} = \widehat {HDK}\) (hai góc nội tiếp cùng chắn cung \(HK)\)

Tứ giác \(HBMC\) nội tiếp nên \(\widehat {HCB} = \widehat {HMB}\) (hai góc nội tiếp cùng chắn cung \(BH)\)

\(\widehat {BDA} = \widehat {KMA}\) (cùng phụ với \(\widehat {MAD})\) hay \(\widehat {HDK} = \widehat {HMB}\) nên \(\widehat {HCK} = \widehat {HCB}\)

Suy ra \(CH\) là tia phân giác của \(\widehat {BCK}.\)

Xét \(\Delta BCN\)\(CH\) là tia phân giác của \(\widehat {BCN}\) nên \(\frac{{HN}}{{HB}} = \frac{{CN}}{{CB}}\) (tính chất tia phân giác). (5)

Kẻ đường thẳng song song với \(CK,\) cắt \(MD\) tại \(P.\)

Xét \(\Delta BDP\)\(BP\,{\rm{//}}\,CN\) nên \(\frac{{CN}}{{PB}} = \frac{{DN}}{{DB}}\) (hệ quả định lí Thalès). (3)

Ta có \(\widehat {HCK} + \widehat {KCD} = 90^\circ \)\(\widehat {HCB} + \widehat {BCP} = 90^\circ \)

\(\widehat {HCK} = \widehat {HCB}\) (chứng minh trên) nên \(\widehat {KCD} = \widehat {BCP}.\)

Do \(BP\,{\rm{//}}\,CK\) nên \(\widehat {BPC} = \widehat {KCD}\) (hai góc đồng vị).

Suy ra \(\widehat {BCP} = \widehat {BPC}\) nên \(\Delta BCP\) cân tại \(B.\) Do đó \[BC = BP.\] (4)

Từ (3) và (4) suy ra \(\frac{{CN}}{{BC}} = \frac{{DN}}{{DB}}\) (6)

Từ (5) và (6) suy ra \(\frac{{HN}}{{HB}} = \frac{{DN}}{{DB}}\) hay \(BD \cdot HN = DN \cdot HB.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giao điểm của parabol \(y = {x^2}\) và đường thẳng \(y = x + 2\) cùng với gốc tọa độ tạo thành tam giác có diện tích bằng          

Xem đáp án » 12/03/2025 1,757

Câu 2:

Bán kính đường tròn ngoại tiếp tam giác đều cạnh 6 cm là         

Xem đáp án » 12/03/2025 722

Câu 3:

1) Giải phương trình \((1)\) khi \(m = - 2\).

Xem đáp án » 12/03/2025 628

Câu 4:

Hình nón có chiều cao bằng 12 cm, bán kính đáy bằng 9 cm thì diện tích xung quanh là          

Xem đáp án » 12/03/2025 612

Câu 5:

Bạn Bắc gieo một con xúc xắc 50 lần cho kết quả như sau:

Số chấm xuất hiện

1

2

3

4

5

6

Tần số

8

7

10

8

6

11

Tần số xuất hiện mặt 3 chấm là          

Xem đáp án » 12/03/2025 523

Câu 6:

Trong các phương trình bậc hai sau phương trình nào có tổng hai nghiệm bằng 3?          

Xem đáp án » 12/03/2025 517

Câu 7:

Bạn Ninh gieo một con xúc xắc liên tiếp hai lần. Số phần tử của không gian mẫu là          

Xem đáp án » 12/03/2025 512
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay