Câu hỏi:
12/03/2025 491
Câu 40-41: (1,0 điểm)
1) Cho \(a,\,\,b,\,\,c\) là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức\(P = \frac{{3\left( {b + c} \right)}}{{2a}} + \frac{{4a + 3c}}{{3b}} + \frac{{12\left( {b - c} \right)}}{{2a + 3c}}.\)
Quảng cáo
Trả lời:
⦁ Chứng minh bổ đề 1: Với \(x > 0,\,\,y > 0\) ta luôn có \(\frac{1}{x} + \frac{1}{y} \ge \frac{4}{{x + y}}.\)
Thật vậy, với \(x > 0,\,\,y > 0\) ta luôn có:
\({\left( {x - y} \right)^2} \ge 0\)
\({x^2} - 2xy + {y^2} \ge 0\)
\({x^2} + 2xy + {y^2} \ge 4xy\)
\({\left( {x + y} \right)^2} \ge 4xy\)
\(\frac{{{{\left( {x + y} \right)}^2}}}{{xy\left( {x + y} \right)}} \ge \frac{{4xy}}{{xy\left( {x + y} \right)}}\)
\(\frac{{x + y}}{{xy}} \ge \frac{4}{{x + y}}\)
\(\frac{1}{x} + \frac{1}{y} \ge \frac{4}{{x + y}}\).
Dấu “=” xảy ra khi và chỉ khi \(x = y.\) Bất đẳng thức được chứng minh.
Chứng minh bổ đề 2: Với \(x > 0,\,\,y > 0\) ta luôn có \(\frac{x}{y} + \frac{y}{x} \ge 2.\)
Thật vậy, với \(x > 0,\,\,y > 0\) ta luôn có:
\({\left( {x - y} \right)^2} \ge 0\)
\({x^2} - 2xy + {y^2} \ge 0\)
\({x^2} + {y^2} \ge 2xy\)
\(\frac{{{x^2} + {y^2}}}{{xy}} \ge \frac{{2xy}}{{xy}}\)
\(\frac{x}{y} + \frac{y}{x} \ge 2.\)
Dấu “=” xảy ra khi và chỉ khi \(x = y.\) Bất đẳng thức được chứng minh.
⦁ Với \(a,\,\,b,\,\,c\) là các số thực dương, ta có:
\(P = \frac{{3\left( {b + c} \right)}}{{2a}} + \frac{{4a + 3c}}{{3b}} + \frac{{12\left( {b - c} \right)}}{{2a + 3c}}\)
\( = \frac{{3b}}{{2a}} + \frac{{3c}}{{2a}} + \frac{{4a}}{{3b}} + \frac{{3c}}{{3b}} + \frac{{12\left( {b - c} \right)}}{{2a + 3c}} + 4 - 4\)
\( = \left( {\frac{{3b}}{{2a}} + \frac{{2a}}{{3b}}} \right) + \left( {\frac{{2a}}{{3b}} + 1} \right) + \left( {\frac{{3c}}{{2a}} + \frac{{3c}}{{3b}}} \right) + \frac{{12b - 12c + 8a + 12c}}{{2a + 3c}} - 5\)
\( = \left( {\frac{{3b}}{{2a}} + \frac{{2a}}{{3b}}} \right) + \left( {\frac{{2a}}{{3b}} + \frac{{2a}}{{2a}}} \right) + \left( {\frac{{3c}}{{2a}} + \frac{{3c}}{{3b}}} \right) + \frac{{4\left( {3b + 2a} \right)}}{{2a + 3c}} - 5\)
\( = \left( {\frac{{3b}}{{2a}} + \frac{{2a}}{{3b}}} \right) + 2a\left( {\frac{1}{{3b}} + \frac{1}{{2a}}} \right) + 3c\left( {\frac{1}{{2a}} + \frac{1}{{3b}}} \right) + \frac{{4\left( {3b + 2a} \right)}}{{2a + 3c}} - 5.\)
⦁ Áp dụng bất đẳng thức Cauchy, ta có: \(\frac{{3b}}{{2a}} + \frac{{2a}}{{3b}} \ge 2\sqrt {\frac{{3b}}{{2a}} \cdot \frac{{2a}}{{3b}}} = 2.\)
Áp dụng bất đẳng thức bổ đề 1 đã chứng minh ở trên, ta có:
\[2a\left( {\frac{1}{{3b}} + \frac{1}{{2a}}} \right) \ge \frac{{2a \cdot 4}}{{2a + 3b}}\] và \[3c\left( {\frac{1}{{2a}} + \frac{1}{{3b}}} \right) \ge \frac{{3c \cdot 4}}{{2a + 3b}}.\]
Do đó \(P = \left( {\frac{{3b}}{{2a}} + \frac{{2a}}{{3b}}} \right) + 2a\left( {\frac{1}{{3b}} + \frac{1}{{2a}}} \right) + 3c\left( {\frac{1}{{2a}} + \frac{1}{{3b}}} \right) + \frac{{4\left( {3b + 2a} \right)}}{{2a + 3c}} - 5\)
\[ \ge 2 + \frac{{2a \cdot 4}}{{2a + 3b}} + \frac{{3c \cdot 4}}{{2a + 3b}} + \frac{{4\left( {3b + 2a} \right)}}{{2a + 3c}} - 5\]
\[ \ge 2 + 4\left( {\frac{{2a + 3c}}{{2a + 3b}} + \frac{{2a + 3b}}{{2a + 3c}}} \right) - 5\]
\[ \ge 2 + 4 \cdot 2 - 5\] (áp dụng bất đẳng thức bổ đề 2 đã chứng minh)
\[ = 5.\]
Như vậy, \(P \ge 5.\) Dấu “=” xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}\frac{{3b}}{{2a}} = \frac{{2a}}{{3b}}\\\frac{1}{{3b}} = \frac{1}{{2a}}\\\frac{1}{{2a}} = \frac{1}{{3b}}\\\frac{{2a + 3c}}{{2a + 3b}} = \frac{{2a + 3b}}{{2a + 3c}}\end{array} \right.\) tức là \(2a = 3b = 3c.\)
Vậy \(P\) đạt giá trị nhỏ nhất bằng 5 khi \(2a = 3b = 3c.\)
Câu hỏi cùng đoạn
Câu 2:
2) Người ta vẽ bản quy hoạch của một khu dân cư được bao quanh bởi ba con đường thẳng lập thành một tam giác với độ dài các cạnh là \(900\;{\rm{m}},\,\,1200\;{\rm{m}}\) và 1500 m như hình vẽ. Họ muốn xây dựng một khách sạn bên trong khu dân cư cách đều cả ba con đường. Hỏi khi đó khách sạn sẽ cách mỗi con đường một khoảng bằng bao nhiêu?

Lời giải của GV VietJack
Gọi \[A,{\rm{ }}B,{\rm{ }}C\] là ba đỉnh của khu dân cư sao cho \[AB = 900\] m, \[AC = 1{\rm{ }}200\] m và \[BC = 1{\rm{ }}500\] m.
Xét \(\Delta ABC\) có:
⦁ \[A{B^2} + A{C^2} = {900^2} + 1{\rm{ }}{200^2} = 2{\rm{ }}250{\rm{ }}000;\]
⦁ \[B{C^2} = 1{\rm{ }}{500^2} = 2{\rm{ }}250{\rm{ }}000.\]
Do đó \[A{B^2} + A{C^2} = B{C^2},\] nên theo định lí Pythagore đảo ta có \(\Delta ABC\) vuông tại \[A.\]Gọi \[O\] là vị trí xây dựng khách sạn; \[H,{\rm{ }}I,{\rm{ }}K\] lần lượt là chân đường vuông góc kẻ từ \[O\] đến \[AB,{\rm{ }}BC,{\rm{ }}CA.\]
Vì vị trí xây dựng khách sạn cách đều cả ba con đường nên \[OH = OI = OK.\]
Mặt khác, \({S_{OAB}} = \frac{1}{2} \cdot OH \cdot AB;\) \({S_{OBC}} = \frac{1}{2} \cdot OI \cdot BC;\) \({S_{OCA}} = \frac{1}{2} \cdot OK \cdot CA.\)
Mà \({S_{ABC}} = {S_{OAB}} + {S_{OBC}} + {S_{OCA}}\)
Suy ra \[{S_{ABC}} = \frac{1}{2} \cdot OH \cdot AB + \frac{1}{2} \cdot OI \cdot BC + \frac{1}{2} \cdot OK \cdot CA\]
Do đó \[{S_{ABC}} = \frac{1}{2} \cdot OH \cdot \left( {AB + BC + CA} \right)\]
Nên \(OH = \frac{{2{S_{ABC}}}}{{AB + BC + CA}}{\rm{.}}\)
Chu vi của phần đất giới hạn bởi tam giác \[ABC\] là:
\[AB + BC + CA = 900 + 1{\rm{ }}500 + 1{\rm{ }}200{\rm{ }} = 3{\rm{ }}600\] (m).
Diện tích của phần đất giới hạn bởi tam giác \[ABC\] là:
\({S_{ABC}} = \frac{1}{2} \cdot AB \cdot AC = \frac{1}{2} \cdot 900 \cdot 1\,\,200 = 540\,\,000{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Do đó \(OH = \frac{{2{S_{ABC}}}}{{AB + BC + CA}} = \frac{{2 \cdot 540\,\,000}}{{3\,\,600}} = 300{\rm{\;(m)}}{\rm{.}}\)
Vậy khách sạn sẽ cách mỗi con đường một khoảng là 300 mét.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải Đáp án đúng là: D Phương trình hoành độ giao điểm của parabol \(y = {x^2}\) và đường thẳng \(y = x + 2\) là: \({x^2} = x + 2\) \({x^2} - x - 2 = 0\) \(\left( {{x^2} + x} \right) - \left( {2x + 2} \right) = 0\) |
|
\(x\left( {x + 1} \right) - 2\left( {x + 1} \right) = 0\)
\(\left( {x + 1} \right)\left( {x - 2} \right) = 0\)
\(x + 1 = 0\) hoặc \(x - 2 = 0\)
\(x = - 1\) hoặc \(x = 2.\)
Thay \(x = - 1\) vào hàm số \(y = {x^2},\) ta được \(y = {\left( { - 1} \right)^2} = 1.\)
Thay \(x = 2\) vào hàm số \(y = {x^2},\) ta được \(y = {2^2} = 4.\)
Như vậy, đường thẳng \(y = x + 2\) cắt parabol \(y = {x^2}\) tại hai điểm \(A\left( { - 1;\,\,1} \right)\) và \(B\left( {2;\,\,4} \right).\)
Gọi giao điểm của đường thẳng \(y = x + 2\) với trục tung là \(I\left( {0;\,\,2} \right).\) Suy ra \(OI = \left| 2 \right| = 2.\)
Gọi hình chiếu của \(A\left( { - 1;\,\,1} \right),\,\,B\left( {2;\,\,4} \right)\) lên trục tung lần lượt là \(H\left( {0;\,\,1} \right)\) và \(K\left( {0;\,\,4} \right).\)
Suy ra \(AH = \left| { - 1} \right| = 1;\,\,BK = \left| 2 \right| = 2.\)
Ta có: \({S_{\Delta OAI}} = \frac{1}{2} \cdot AH \cdot OI = \frac{1}{2} \cdot 1 \cdot 2 = 1\) (đơn vị diện tích);
\[{S_{\Delta OBI}} = \frac{1}{2} \cdot BK \cdot OI = \frac{1}{2} \cdot 2 \cdot 2 = 2\] (đơn vị diện tích).
Vậy diện tích của tam giác \(OAB\) là: \({S_{\Delta OAB}} = {S_{\Delta OAI}} + {S_{\Delta OBI}} = 1 + 2 = 3\) (đơn vị diện tích).
Lời giải
Đáp án đúng là: D
Bán kính đường tròn ngoại tiếp tam giác đều cạnh 6 cm là \(\frac{{6 \cdot \sqrt 3 }}{3} = 2\sqrt 3 {\rm{\;(cm)}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.