Câu hỏi:
12/03/2025 715
Câu 19-21: (2,5 điểm) Cho tam giác \[ABC\] nhọn \[\left( {AB < AC} \right)\] có đường cao \[AD\] và đường phân giác trong \[AO\] \[\left( {D,O} \right.\] thuộc cạnh \[\left. {BC} \right).\] Kẻ \[OM\] vuông góc với \[AB\] tại \[M,\,\,ON\] vuông góc với \[AC\] tại \[N.\]
1) Chứng minh bốn điểm \[D,M,N,O\] cùng nằm trên một đường tròn.
Câu 19-21: (2,5 điểm) Cho tam giác \[ABC\] nhọn \[\left( {AB < AC} \right)\] có đường cao \[AD\] và đường phân giác trong \[AO\] \[\left( {D,O} \right.\] thuộc cạnh \[\left. {BC} \right).\] Kẻ \[OM\] vuông góc với \[AB\] tại \[M,\,\,ON\] vuông góc với \[AC\] tại \[N.\]
Quảng cáo
Trả lời:
Ta có \[\widehat {AMO} = \widehat {ANO} = 90^\circ \] (giả thiết); \[\widehat {ADO} = 90^\circ \] (giả thiết).
Tam giác \[AMO\] vuông tại \[M\] nên tam giác \[AMO\] nội tiếp đường tròn đường kính \[AO\] có tâm là trung điểm của cạnh huyền \[AO.\]
Tương tự, hai tam giác \[ADO\] và \[ANO\] ngoại tiếp đường tròn đường kính \[AO.\]
Suy ra bốn điểm \[D,M,N,O\] cùng nằm trên đường tròn đường kính \[AO.\]
Câu hỏi cùng đoạn
Câu 2:
2) Chứng minh \(OM = ON\) và \[\widehat {BDM} = \widehat {ODN}.\]
Lời giải của GV VietJack
Xét \[\Delta OAM\] và \(\Delta OAN\) có:
\(\widehat {OMA} = \widehat {ONA} = 90^\circ \); cạnh \(OA\) chung;
\(\widehat {OAM} = \widehat {OAN}\) (vì \[AO\] đường phân giác trong của \(\Delta ABC\,)\)
Do đó \[\Delta OAM = \Delta OAN\] (cạnh huyền – góc nhọn).
Suy ra \[OM = ON\] (hai cạnh tương ứng).
Do tứ giác MDON nội tiếp nên \[\widehat {ODN} = \widehat {OMN}\] và \[\widehat {BDM} = \widehat {ONM}\].
Mà \[\widehat {ONM} = \widehat {OMN}\](do tam giác OMN cân tại O). Suy ra \[\widehat {ODN} = \widehat {BDM}\] (đpcm).
* Cách khác:
Chứng minh được hai tam giác OAM và OAN bằng nhau suy ra OM = ON.
Ta có \[\widehat {BDM} + \widehat {ADM} = 90^\circ \], \[\widehat {MAO} + \widehat {AOM} = 90^\circ \].
Mà \[\widehat {ADM} = \widehat {AOM}\] (cùng chắn cung \[AM),\] suy ra \[\widehat {BDM} = \widehat {MAO}\].
Lại có \[\widehat {MAO} = \widehat {OAN}\] (tính chất đường phân giác). Suy ra \[\widehat {BDM} = \widehat {OAN}\].
Hơn nữa \[\widehat {OAN} = \widehat {ODN}\] (cùng chắn cung \[ON),\] suy ra \[\widehat {BDM} = \widehat {ODN}\] (đpcm).
Câu 3:
3) Qua \[O,\] kẻ đường thẳng vuông góc với \[BC\] cắt \[MN\] tại \[I,\,\,AI\] cắt \[BC\] tại \[K.\] Chứng minh \[K\] là trung điểm của \[BC.\]
Lời giải của GV VietJack
Qua \[I,\] kẻ đường thẳng song song với \[BC\] cắt \[AB,\,\,AC\] lần lượt tại \[P,\,\,Q.\]
Ta có: \[\widehat {IOP} = \widehat {IMP} = \widehat {INA}\], \[\widehat {INA} = \widehat {IOQ}\] (vì tứ giác \[OINQ\] nội tiếp).
Suy ra \[\widehat {IOP} = \widehat {IOQ}\]. Mà \[OI \bot PQ\] nên \[OI\] là trung tuyến của tam giác \[OPQ.\]
Ta có \[PQ\,{\rm{//}}\,BC\] nên \[\frac{{IP}}{{KB}} = \frac{{AI}}{{AK}} = \frac{{IQ}}{{KC}}\]. Mà \[IP = IQ,\] suy ra \[KB = KC.\]
Vậy \[K\] là trung điểm của \[BC.\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x,\,\,y\) lần lượt là số trận hòa và số trận thắng \(\left( {x,\,\,y \in \mathbb{N}*} \right)\).
Mỗi đội bóng thi đấu với 3 đội còn lại, do đó có tất cả: \[\frac{{4 \cdot 3}}{2} = 6\] (trận).
Do đó ta có: \(x + y = 6 & \left( 1 \right)\)
Tổng số điểm trận hòa là \(2x\) (điểm)
Tổng số điểm trận thắng là \(3y\) (điểm).
Theo đề bài, tổng số điểm của tất cả các trận đấu bằng 16 điểm nên ta có phương trình
\(2x + 3y = 16 & \left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có hệ phương trình \[\left\{ \begin{array}{l}x + y = 6\\2x + 3y = 16\end{array} \right.\].
Giải hệ phương trình, ta được: \(\left\{ \begin{array}{l}x = 2\\y = 4\end{array} \right.\,\,\,\left( {{\rm{TM}}} \right)\).
Vậy có 2 trận hòa và 4 trận thắng.
Lời giải
Đáp án đúng là: B
Tần số xuất hiện mặt 3 chấm là: \(50 - 8 - 7 - 8 - 6 - 11 = 10\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.