Câu hỏi:

12/03/2025 178

(0,5 điểm) Một cái thùng đựng nước được tạo thành từ việc cắt mặt xung quanh của một hình nón bởi một mặt phẳng vuông góc với trục của hình nón. Miệng thùng là đường tròn có bán kính bằng hai lần bán kính mặt đáy của thùng. Bên trong thùng có một cái phễu dạng hình nón có đáy là đáy của thùng, có đỉnh là tâm của miệng thùng (xem hình minh họa). Biết rằng đổ 12 lít nước vào thùng thì đầy thùng (nước không chảy được vào bên trong phễu), tính thể tích của phễu.

Biết rằng đổ 12 lít nước vào thùng thì đầy thùng (nước không chảy được vào bên trong phễu), tính thể tích của phễu. (ảnh 1)

 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Biết rằng đổ 12 lít nước vào thùng thì đầy thùng (nước không chảy được vào bên trong phễu), tính thể tích của phễu. (ảnh 2)

Đường sinh \[AB\] cắt trục \[OO'\] tại \[C.\] Khi đó hai hình nón có đỉnh \[O,\,\,C\] có chung đáy là hình tròn \[\left( {O'} \right)\] có thể tích bằng nhau.

Gọi \[{V_1}\] là thể tích hình nón đỉnh \[C,\] đáy là hình tròn \[\left( {O'} \right)\]; \[{V_2}\] là thể tích hình nón đỉnh \[O,\] đáy là hình tròn \[\left( {O'} \right)\]; \[V\] là thể tích hình nón đỉnh \[C,\] đáy là hình tròn \[\left( O \right)\];

\({V_n} = 12\) là thể tích nước đổ vào.

Ta có \[\frac{{{V_1}}}{V} = \frac{{\frac{1}{3} \cdot CO' \cdot \pi \cdot O'{B^2}}}{{\frac{1}{3} \cdot CO \cdot \pi \cdot O{A^2}}} = \frac{{CO'}}{{CO}} \cdot {\left( {\frac{{O'B}}{{OA}}} \right)^2} = \frac{1}{{\rm{2}}} \cdot {\left( {\frac{1}{2}} \right)^2} = \frac{1}{8}\].

Suy ra \[{V_1}\, = {V_2} = \frac{1}{8}V & \left( 1 \right)\].

Do đó thể tích nước đổ vào \({V_n} = \frac{6}{8}V\, & \left( 2 \right)\) (vì \[{V_1} + {V_2}\, + {V_n} = V\]).

Từ \[\left( 1 \right)\]\(\left( 2 \right)\) suy ra \[{V_1} = {V_2} = \frac{1}{6}{V_n} = \frac{1}{6} \cdot 12 = 2\] l(ít).

Vậy thể tích của phễu là 2 lít.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1) Chứng minh bốn điểm \[D,M,N,O\] cùng nằm trên một đường tròn. (ảnh 1)

Ta có \[\widehat {AMO} = \widehat {ANO} = 90^\circ \] (giả thiết); \[\widehat {ADO} = 90^\circ \] (giả thiết).

Tam giác \[AMO\] vuông tại \[M\] nên tam giác \[AMO\] nội tiếp đường tròn đường kính \[AO\] có tâm là trung điểm của cạnh huyền \[AO.\]

Tương tự, hai tam giác \[ADO\]\[ANO\] ngoại tiếp đường tròn đường kính \[AO.\]

Suy ra bốn điểm \[D,M,N,O\] cùng nằm trên đường tròn đường kính \[AO.\]

Lời giải

Gọi \(x,\,\,y\) lần lượt là số trận hòa và số trận thắng \(\left( {x,\,\,y \in \mathbb{N}*} \right)\).

Mỗi đội bóng thi đấu với 3 đội còn lại, do đó có tất cả: \[\frac{{4 \cdot 3}}{2} = 6\] (trận).

Do đó ta có: \(x + y = 6 & \left( 1 \right)\)

Tổng số điểm trận hòa là \(2x\) (điểm)

Tổng số điểm trận thắng là \(3y\) (điểm).

Theo đề bài, tổng số điểm của tất cả các trận đấu bằng 16 điểm nên ta có phương trình

\(2x + 3y = 16 & \left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có hệ phương trình \[\left\{ \begin{array}{l}x + y = 6\\2x + 3y = 16\end{array} \right.\].

Giải hệ phương trình, ta được: \(\left\{ \begin{array}{l}x = 2\\y = 4\end{array} \right.\,\,\,\left( {{\rm{TM}}} \right)\).

Vậy có 2 trận hòa và 4 trận thắng.

Câu 3

Gieo một con xúc xắc 50 lần cho kết quả như sau:

Số chấm xuất hiện

1

2

3

4

5

6

Tần số

8

7

?

8

6

11

Tần số xuất hiện mặt 3 chấm là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Bất phương trình nào sau đây không phải là bất phương trình bậc nhất một ẩn \[x\]?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP