Giả sử sự lây lan của một loại virus ở một địa phương có thể được mô hình hoá bằng hàm số N(t) = −t3 + 12t2, 0 ≤ t ≤ 12, trong đó N là số người bị nhiễm bệnh (tính bằng trăm người) và t là thời gian (tuần).
a) Hãy ước tính số người tối đa bị nhiễm bệnh ở địa phương đó.
b) Đạo hàm N'(t) biểu thị tốc độ lây lan của virus (còn gọi là tốc độ truyền bệnh). Hỏi virus sẽ lây lan nhanh nhất khi nào?
Quảng cáo
Trả lời:
Hướng dẫn giải:
a) Với 0 ≤ t ≤ 12 ta có:
N'(t) = −3t2 + 24t, N'(t) = 0 −3t2 + 24t = 0 t = 0 (tm) hoặc t = 8 (tm).
Ta có: N(0) = 0, N(8) = 256; N(12) = 0.
Do đó, số người tối đa bị nhiễm bệnh ở địa phương là 256 người trong 12 tuần đầu.
b) Hàm số biểu thị tốc độ độ lây lan của virus là: N'(t) = −3t2 + 24t.
Đặt f(t) = −3t2 + 24t, 0 ≤ t 12.
Ta có: f'(t) = −6t + 24, f'(t) = 0 t = 4 (tm).
Có f(0) = 0, f(4) = −3.42 + 24.4 = 48, f(12) = −3.122 + 14.12 = −144.
Do đó, virus sẽ lây lan nhanh nhất khi t = 4 (tuần thứ 4).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Gọi x là chiều rộng của đáy thùng, x > 0, đơn vị m.
chiều dài của đáy thùng là: 2x.
Ta có V = x.2x.h = 10 \(h = \frac{5}{{{x^2}}}\).
Chi phí làm đáy thùng là: 2x2.75 = 150x2 (đơn vị nghìn đồng).
Chi phí làm diện tích xung quanh là : \(\left( {2x.\frac{5}{{{x^2}}} + 2.2x.\frac{5}{{{x^2}}}} \right).55 = \frac{{1650}}{x}\) (đơn vị nghìn đồng).
Chi phí làm thùng là : \(T = 150{x^2} + \frac{{1650}}{x}\) (đơn vị nghìn đồng).
Xét hàm số \(T = 150{x^2} + \frac{{1650}}{x}\), với x > 0.
Ta có \(T'\left( x \right) = 300x - \frac{{1650}}{{{x^2}}}\) ; \(T'\left( x \right) = 0 \Leftrightarrow x = \sqrt[3]{{\frac{{11}}{2}}}\).
Bảng biến thiên
Dựa vào bảng biến thiên T(x) đạt giá trị nhỏ nhất tại \(x = \sqrt[3]{{\frac{{11}}{2}}}\).
Vậy chi phí ít nhất bằng \(T = 150{\left( {\sqrt[3]{{\frac{{11}}{2}}}} \right)^2} + \frac{{1650}}{{\sqrt[3]{{\frac{{11}}{2}}}}} \approx 1402000\) đồng.
Lời giải
Đáp án đúng là: A
Đặt OP = x (0 < x < 4) BP = 4 – x; \(AP = \sqrt {4 + {x^2}} \).
Khoảng thời gian để anh Ba từ vị trí xuất phát đến được điểm B là:
\({t_{\left( x \right)}} = {t_{AP}} + {t_{PB}} = \frac{{\sqrt {4 + {x^2}} }}{6} + \frac{{4 - x}}{{10}}\,\,\left( h \right)\, \Rightarrow {t'_{\left( x \right)}} = \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}}\).
\({t'_{\left( x \right)}} = 0 \Leftrightarrow \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}} = 0 \Leftrightarrow 3\sqrt {4 + {x^2}} = 5x \Leftrightarrow \left\{ \begin{array}{l}0 < x < 4\\4{x^2} = 9\end{array} \right. \Leftrightarrow x = \frac{3}{2}.\)
Bảng biến thiên
Từ bảng biến thiên suy ra khoảng thời gian ngắn nhất để anh Ba từ vị trí xuất phát đến được điểm B là: \({t_{\min }} = \frac{2}{3}\,\left( h \right)\, = \frac{2}{3}.60\,\left( {ph\'u t} \right) = 40\,ph\'u t.\)
</></>
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.