Câu hỏi:
27/03/2025 155Câu 21-22. (1,5 điểm) Trong các hệ thống máy, một dây curoa bao quanh 2 bánh quay là hai đường tròn có tâm \({O_1}\) bán kính 40 cm và tâm \({O_2}\) bán kính 10 cm như hình dưới đây. Gọi \(A,\,\,D\) là các điểm trên \(\left( {{O_1}} \right)\) và \(B,\,\,C\) là các điểm trên \(\left( {{O_2}} \right)\) sao cho \(AB\) và \(CD\) tiếp xúc với đường tròn \(\left( {{O_1}} \right),\,\,\left( {{O_2}} \right)\) và chúng cắt nhau tại \(M\) tạo thành góc \(\widehat {BMC} = 60^\circ .\)
Quảng cáo
Trả lời:
Vì \(MA,\,\,MD\) là các tiếp tuyến của \(\left( {{O_1}} \right)\) nên \(M{O_1}\) là phân giác của \(\widehat {AMD}.\)
Suy ra \(\widehat {AM{O_1}} = \frac{1}{2}\widehat {AMB} = \frac{1}{2}60^\circ = 30^\circ .\)
Do \(MA\) là tiếp tuyến của \(\left( {{O_1}} \right)\) nên \(MA \bot {O_1}A.\)
Xét \(\Delta MA{O_1}\) vuông tại \(A,\) ta có: \(\widehat {AM{O_1}} + \widehat {A{O_1}M} = 90^\circ \) (tổng hai góc nhọn của tam giác vuông).
Suy ra \(\widehat {A{O_1}M} = 90^\circ - \widehat {AM{O_1}} = 90^\circ - 30^\circ = 60^\circ .\)
Vì \(MA,\,\,MD\) là các tiếp tuyến của \(\left( {{O_1}} \right)\) nên \({O_1}M\) là phân giác của \(\widehat {A{O_1}D}.\)
Suy ra \(\widehat {A{O_1}D} = 2\widehat {A{O_1}M} = 2 \cdot 60^\circ = 120^\circ .\)
Do đó số đo cung nhỏ là
Như vậy, số đo cung lớn của đường tròn \(\left( {{O_1}} \right)\) là
Ta có số đo cung lớn của đường tròn \(\left( {{O_1}} \right)\) là \(240^\circ \) nên độ dài cung lớn của đường tròn \(\left( {{O_1}} \right)\) là: \({l_1} = \frac{{\pi \cdot 40 \cdot 240}}{{180}} = \frac{{160\pi }}{3}{\rm{\;(cm)}}{\rm{.}}\)
Câu hỏi cùng đoạn
Câu 2:
Lời giải của GV VietJack
Tương tự câu 1, trong đường tròn \(\left( {{O_2}} \right)\) ta có: nên độ dài cung nhỏ của đường tròn \(\left( {{O_2}} \right)\) là: \({l_2} = \frac{{\pi \cdot 10 \cdot 120}}{{180}} = \frac{{20\pi }}{3}{\rm{\;(cm)}}{\rm{.}}\)
Xét \(\Delta M{O_1}A\) và \(\Delta M{O_2}B\) có: \(\widehat {MA{O_1}} = \widehat {MB{O_2}} = 90^\circ \) và \(\widehat {AM{O_1}}\) là góc chung
Do đó (g.g). Suy ra \(\frac{{MA}}{{MB}} = \frac{{{O_1}A}}{{{O_2}B}} = \frac{{40}}{{10}} = 4.\)
Nên \(MA = 4MB,\) suy ra \(AB = 3MB.\)
Xét \(\Delta M{O_2}B\) vuông tại\(B,\) ta có:
\(MB = {O_2}B \cdot \cot \widehat {BM{O_2}} = {O_2}B \cdot \cot 30^\circ = 10 \cdot \tan 60^\circ = 10\sqrt 3 {\rm{\;(cm)}}{\rm{.}}\)
Do đó \(AB = 3MB = 3 \cdot 10\sqrt 3 = 30\sqrt 3 {\rm{\;(cm)}}{\rm{.}}\)
Vậy độ dài của dây cua-roa là
\(2AB + {l_1} + {l_2} = 2 \cdot 30\sqrt 3 + \frac{{160\pi }}{3} + \frac{{20\pi }}{3} = 60\left( {\pi + \sqrt 3 } \right){\rm{\;(cm)}}.\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Câu 6:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
123 bài tập Nón trụ cầu và hình khối có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận