Câu hỏi:

27/03/2025 248

Câu 21-22. (1,5 điểm) Trong các hệ thống máy, một dây curoa bao quanh 2 bánh quay là hai đường tròn có tâm \({O_1}\) bán kính 40 cm và tâm \({O_2}\) bán kính 10 cm như hình dưới đây. Gọi \(A,\,\,D\) là các điểm trên \(\left( {{O_1}} \right)\)\(B,\,\,C\) là các điểm trên \(\left( {{O_2}} \right)\) sao cho \(AB\)\(CD\) tiếp xúc với đường tròn \(\left( {{O_1}} \right),\,\,\left( {{O_2}} \right)\) và chúng cắt nhau tại \(M\) tạo thành góc \(\widehat {BMC} = 60^\circ .\)

 

1) Tính số đo cung lớn  của đường tròn \(\left( {{O_1}} \right).\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(MA,\,\,MD\) là các tiếp tuyến của \(\left( {{O_1}} \right)\) nên \(M{O_1}\) là phân giác của \(\widehat {AMD}.\)

Suy ra \(\widehat {AM{O_1}} = \frac{1}{2}\widehat {AMB} = \frac{1}{2}60^\circ = 30^\circ .\)

Do \(MA\) là tiếp tuyến của \(\left( {{O_1}} \right)\) nên \(MA \bot {O_1}A.\)

Xét \(\Delta MA{O_1}\) vuông tại \(A,\) ta có: \(\widehat {AM{O_1}} + \widehat {A{O_1}M} = 90^\circ \) (tổng hai góc nhọn của tam giác vuông).

Suy ra \(\widehat {A{O_1}M} = 90^\circ - \widehat {AM{O_1}} = 90^\circ - 30^\circ = 60^\circ .\)

\(MA,\,\,MD\) là các tiếp tuyến của \(\left( {{O_1}} \right)\) nên \({O_1}M\) là phân giác của \(\widehat {A{O_1}D}.\)

Suy ra \(\widehat {A{O_1}D} = 2\widehat {A{O_1}M} = 2 \cdot 60^\circ = 120^\circ .\)

Do đó số đo cung nhỏ  

Như vậy, số đo cung lớn  của đường tròn \(\left( {{O_1}} \right)\)

Ta có số đo cung lớn  của đường tròn \(\left( {{O_1}} \right)\)\(240^\circ \) nên độ dài cung lớn  của đường tròn \(\left( {{O_1}} \right)\) là: \({l_1} = \frac{{\pi \cdot 40 \cdot 240}}{{180}} = \frac{{160\pi }}{3}{\rm{\;(cm)}}{\rm{.}}\)

Câu hỏi cùng đoạn

Câu 2:

2) Tính độ dài dây cuaroa.

Xem lời giải

verified Lời giải của GV VietJack

Tương tự câu 1, trong đường tròn \(\left( {{O_2}} \right)\) ta có:  nên độ dài cung nhỏ  của đường tròn \(\left( {{O_2}} \right)\) là: \({l_2} = \frac{{\pi \cdot 10 \cdot 120}}{{180}} = \frac{{20\pi }}{3}{\rm{\;(cm)}}{\rm{.}}\)

Xét \(\Delta M{O_1}A\)\(\Delta M{O_2}B\) có: \(\widehat {MA{O_1}} = \widehat {MB{O_2}} = 90^\circ \)\(\widehat {AM{O_1}}\) là góc chung

Do đó  (g.g). Suy ra \(\frac{{MA}}{{MB}} = \frac{{{O_1}A}}{{{O_2}B}} = \frac{{40}}{{10}} = 4.\)

Nên \(MA = 4MB,\) suy ra \(AB = 3MB.\)

Xét \(\Delta M{O_2}B\) vuông tại\(B,\) ta có:

\(MB = {O_2}B \cdot \cot \widehat {BM{O_2}} = {O_2}B \cdot \cot 30^\circ = 10 \cdot \tan 60^\circ = 10\sqrt 3 {\rm{\;(cm)}}{\rm{.}}\)

Do đó \(AB = 3MB = 3 \cdot 10\sqrt 3 = 30\sqrt 3 {\rm{\;(cm)}}{\rm{.}}\)

Vậy độ dài của dây cua-roa là

\(2AB + {l_1} + {l_2} = 2 \cdot 30\sqrt 3 + \frac{{160\pi }}{3} + \frac{{20\pi }}{3} = 60\left( {\pi + \sqrt 3 } \right){\rm{\;(cm)}}.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Khi quay hình chữ nhật \(ABCD\) một vòng quanh cạnh \(AB\) ta được một hình trụ có bán kính đáy bằng độ dài đoạn thẳng nào đưới đây?          

Lời giải

Khi quay hình chữ nhật \(ABCD\) một vòng quanh cạnh \(AB\) ta được một hình trụ có bán kính đáy bằng độ dài đoạn thẳng nào đưới đây? 	A. \(AD\).	B. \(AC\).	C. \(CD\).	D. \(AB\). (ảnh 1)

Đáp án đúng là: A

Khi quay hình chữ nhật \(ABCD\) một vòng quanh cạnh \(AB\) ta được một hình trụ có bán kính đáy bằng độ dài đoạn thẳng

Câu 2

Đồ thị của hàm số \(y = 2{x^2}\) có trục đối xứng là          

Lời giải

Đáp án đúng là: D

Đồ thị của hàm số \(y = 2{x^2}\) có trục đối xứng là trục tung \(Oy.\)

Câu 4

Phương trình nào sau đây là phương trình bậc hai một ẩn?          

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Căn thức bậc ba của biểu thức \({\left( {1 - x} \right)^3}\)          

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

I. PHẦN TRẮC NGHIỆM (4,0 điểm)

Giá trị nào dưới đây không phải là một nghiệm của bất phương trình \( - 3x + 4 < 0\)?          

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay