Câu hỏi:

12/04/2025 100

Câu 9-11. Cho đường tròn \(\left( {O\,;\,\,R} \right)\) và đường thẳng \(d\) không đi qua \(O\) cắt đường tròn tại hai điểm \(ABC\)\(A,\,\,B\). Lấy một điểm \(M\) trên tia đối của tia \(BA\) kẻ hai tiếp tuyến \(MC,\,\,MD\) với đường tròn \(\left( {C,\,\,\,D} \right.\) là hai tiếp điểm). Gọi \(H\) là trung điểm của \(AB.\)
a) Chứng minh rằng \(M,\,\,D,\,\,O,\,\,H\) cùng nằm trên một đường tròn.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Chứng minh rằng \(M,\,\,D,\,\,O,\,\,H\) cùng nằm trên một đường tròn. (ảnh 1)

a) Vì \(MC,\,\,MD\) là tiếp tuyến của \(\left( {O\,;\,\,R} \right)\) \(\left( {C,\,\,\,D} \right.\) là hai tiếp điểm) nên \(MC \bot OC,\,\)\(\,MD \bot OD.\)

Suy ra \(\widehat {OCM} = \widehat {ODM} = 90^\circ \) nên \(C,\,\,D\) thuộc đường tròn đường kính \(OM\).

\(H\) là trung điểm của \(AB\)\(AB\) là dây của \(\left( {O\,;\,\,R} \right)\) nên \(OH \bot AB\).

Suy ra \(\widehat {OHM} = 90^\circ \) nên \(H\) thuộc đường tròn đường kính \(OM\).

Vậy \(M,\,\,D,\,\,O,\,\,H\) cùng nằm trên đường tròn đường kính \(OM\).

Câu hỏi cùng đoạn

Câu 2:

b) Đoạn \(OM\) cắt đường tròn tại \(I.\) Chứng minh rằng \(I\) là tâm đường tròn nội tiếp tam giác \(MCD.\)

Xem lời giải

verified Lời giải của GV VietJack

b) \(MC,\,\,MD\) là tiếp tuyến của \(\left( {O\,;\,\,R} \right)\)\(\left( {C,\,\,\,D} \right.\) là hai tiếp điểm) nên \(MO\) là tia phân giác của \(\widehat {CMD}\)\(OM\) là tia phân giác của \(\widehat {COD}.\)

Mặt khác, \(\widehat {MCI} = \widehat {CDI}\) (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn

\(\widehat {CDI} = \widehat {DCI}\) (tam giác \(CDI\) cân tại \[I\,)\].

Suy ra \[\widehat {MCI} = \widehat {DCI}\] nên \[CI\] là tia phân giác của \(\widehat {MCD}\).

Ta có \(I\) là giao điểm hai đường phân giác trong của tam giác \(MCD\) nên \(I\) là tâm đường tròn nội tiếp tam giác \(MCD.\)

Câu 3:

c) Đường thẳng qua \(O,\) vuông góc với \(OM\) cắt các tia \(MC,\,\,MD\) theo thứ tự tại \(P,\,\,Q.\) Tìm vị trí của điểm \(M\) trên \(d\) sao cho diện tích tam giác \(MPQ\) nhỏ nhất.

Xem lời giải

verified Lời giải của GV VietJack

c) Ta có \({S_{MPQ}} = 2{S_{MPO}} = MP \cdot OC = \left( {MC + CP} \right) \cdot R\).

\(MC + CP \ge 2\sqrt {MC.CP} = 2\sqrt {O{C^2}} = 2R\) nên \({S_{MPQ}} \ge 2{R^2}\).

Dấu xảy ra khi \(MC = CP = R\) hay \(OM = R\sqrt 2 \).

Vậy để diện tích tam giác \(MPQ\) nhỏ nhất thì \(M\) là giao điểm của \(\left( {O\,;\,\,R\sqrt 2 } \right)\) và đường thẳng \(d.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có bảng sau:

Lần 2

Lần 1

1

2

3

4

1

(1, 1)

(1, 2)

(1, 3)

(1, 4)

2

(2, 1)

(2, 2)

(2, 3)

(2, 4)

3

(3, 1)

(3, 2)

(3, 3)

(3, 4)

4

(4, 1)

(4, 2)

(4, 3)

(4, 4)

Không gian mẫu là:

\[\Omega = \left\{ {\left( {1\,,\,\,1} \right)\,;\,\,\left( {1\,,\,\,2} \right)\,;\,\,\left( {1\,,\,\,3} \right)\,;\,\,\left( {1\,,\,\,4} \right)\,;\,\,\left( {2\,,\,\,1} \right)\,;\,\,\left( {2\,,\,\,2} \right);{\rm{ }}\left( {2\,,\,\,3} \right);{\rm{ }}\left( {2\,,\,\,4} \right);{\rm{ }}\left( {3\,,\,\,1} \right)\,;\,\,\left( {3\,,\,\,2} \right)} \right.\,;\,\,\left( {3\,,\,\,3} \right)\,;\,\,\left( {3\,,\,\,4} \right)\,;{\rm{ }}\] \[\left. {\left( {4\,,\,\,1} \right);\,\,\left( {4\,,\,\,2} \right);\,\,\left( {4\,,\,\,3} \right);\,\,\left( {4\,,\,\,4} \right)} \right\}.\]

Do đó, không gian mẫu có 16 phần tử.

Lời giải

a) Gọi \(n\) là tổng số học sinh của lớp 9A, ta có \(\frac{5}{n} \cdot 100\% = 12,5\% \).

Suy ra \(n = 40\) học sinh.    

Ta có bảng phân bố tần số ghép nhóm như sau:

Thời gian (tính bằng giây)

\(\left[ {13;15} \right)\)

\(\left[ {15;17} \right)\)

\(\left[ {17;19} \right)\)

\(\left[ {19;21} \right)\)

Tần số

5

16

13

6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Tính hằng số \(a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay