Câu hỏi:

14/04/2025 47

Cho hệ phương trình \(\left\{ \begin{array}{l}x + 3y = 6\\ - x - y = 0\end{array} \right.\), cặp số nào sau đây là nghiệm của hệ phương trình?

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Chọn D
* Thay \(x = 2\) và \(y = 1\) vào phương trình \(x + 3y = 6\) ta được \(2 + 3 \cdot 1 = 5 \ne 6\) (không thỏa mãn)
Suy ra \(\left( {2;1} \right)\) không đồng thời thỏa mãn hai phương trình.
Nên \(\left( {2;1} \right)\)không phải là nghiệm hệ phương trình.
* Thay \(x = 3\) và \(y = 2\) vào phương trình \(x + 3y = 6\) ta được \(3 + 3 \cdot 2 = 9 \ne 6\)
Suy ra \(\left( {3;2} \right)\) không đồng thời thỏa mãn hai phương trình.
Nên \(\left( {3;2} \right)\)không phải là nghiệm hệ phương trình.
* Thay \(x = 6\) và \(y = 0\)
- Vào phương trình \(x + 3y = 6\) ta được \(6 + 3 \cdot 0 = 6\) (thỏa mãn)
- Vào phương trình \( - x - y = 0\) ta được \( - 6 - 6 = 12 \ne 0\) (không thỏa mãn)
Suy ra \(\left( {6;0} \right)\) không đồng thời thỏa mãn hai phương trình.
Nên \(\left( {6;0} \right)\)không phải là nghiệm hệ phương trình.
* Thay \(x = - 3\) và \(y = 3\)
- Vào phương trình \(x + 3y = 6\) ta được \( - 3 + 3 \cdot 3 = 6\) (thỏa mãn)
- Vào phương trình \( - x - y = 0\) ta được \( - \left( { - 3} \right) - 3 = 0\) (thỏa mãn)
Suy ra \(\left( { - 3;3} \right)\) đồng thời thỏa mãn hai phương trình.
Nên \(\left( { - 3;3} \right)\)là nghiệm hệ phương trình.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hệ phương trình \[\left\{ \begin{array}{l}x + 2y = m + 3\\2x - 3y = m\end{array} \right.\] (\(m\)là tham số). Tìm \(m\) để hệ có nghiệm duy nhất \((x;y)\) thỏa mãn \(x + y = - 3\).

Xem đáp án » 14/04/2025 60

Câu 2:

Tìm tất cả các giá trị của tham số \[k\]để hệ phương trình: \(\left\{ \begin{array}{l}kx - 2y = 1\\3x + y = 3\end{array} \right.\) có nghiệm duy nhất.

Xem đáp án » 14/04/2025 58

Câu 3:

Hệ phương trình \(\left\{ \begin{array}{l}x - y - 2 = 0\\x - y + 3 = 0\end{array} \right.\) có?

Xem đáp án » 14/04/2025 57

Câu 4:

Hệ phương trình \(\left\{ \begin{array}{l}2x + {b_1}y = 1\\ - 3x + {b_2}y = 5\end{array} \right.\) có nghiệm duy nhất khi:

Xem đáp án » 14/04/2025 56

Câu 5:

Cho hệ phương trình \(\left\{ \begin{array}{l}x + 3y = 6\\ - 2x - y = - 5\end{array} \right.\), hệ số \(a,b,c\)\(a',b',c'\) của hệ phương trình?

Xem đáp án » 14/04/2025 54

Câu 6:

Hệ phương trình \(\left\{ \begin{array}{l}2x - my = - 3\\ - 4x + 2y = 6\end{array} \right.\) vô nghiệm, khi \(m\) có giá trị:

Xem đáp án » 14/04/2025 53

Câu 7:

Có bao nhiêu giá trị k để hệ phương trình sau có nghiệm: \(\left\{ \begin{array}{l}(x - 3)(y + {k^2} - 16) = 0\begin{array}{*{20}{c}}{}&{\left( 1 \right)}\end{array}\\(x - k)(y - 7) = 0\begin{array}{*{20}{c}}{}&{\left( 2 \right)}\end{array}\end{array} \right.\)

Xem đáp án » 14/04/2025 53
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua