Hệ phương trình \(\left\{ \begin{array}{l}x + 3y = 8\\2x - 7y = - 23\end{array} \right.\) có nghiệm là:
Quảng cáo
Trả lời:
Giải hệ phương trình trên ta được \(x = - 1;y = 3.\)
Chú ý: Ta cũng có thể thay các giá trị của x và y ở các phương án và các phương trình đã cho. Tuy nhiên, cách này chỉ tối ưu khi việc giải hệ phương trình trên gặp khó khăn.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[\left\{ \begin{array}{l}x + 2y = m + 3\\2x - 3y = m\end{array} \right.\]
\[\left\{ \begin{array}{l}2x + 4y = 2m + 6\\2x - 3y = m\end{array} \right.\]
\[\left\{ \begin{array}{l}x + 2y = m + 3\\7y = m + 6\end{array} \right.\]
\[\left\{ \begin{array}{l}x = \frac{{5m + 9}}{7}\\y = \frac{{m + 6}}{7}\end{array} \right.\]
Hệ phương trình có nghiệm duy nhất \[(x;y) = \left( {\frac{{5m + 9}}{7};\frac{{m + 6}}{7}} \right)\]
Lại có \[x + y = - 3\] hay \[\frac{{5m + 9}}{7} + \frac{{m + 6}}{7} = - 3\]
\[5m + 9 + m + 6 = - 21\]
\[6m = - 36\]
\[m = - 6\]
Vậy với \[m = - 6\] thì hệ phương trình có nghiệm duy nhất \[(x,y)\] thỏa mãn \[x + y = - 3\].
Lời giải
Nhân 2 vào phương trình thứ nhất của hệ ta có: \(\left\{ \begin{array}{l}6x - 2y = 10\\\left( {{m^2} - 7m + 6} \right)x - 2y = 10\end{array} \right.\)
Hệ có vô số nghiệm khi \({m^2} - 7m + 6 = 6\) nên \(m \in {\rm{\{ }}0;7{\rm{\} }}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.