Câu hỏi:

14/04/2025 91 Lưu

Hệ phương trình \(\left\{ \begin{array}{l}x + 3y = 8\\2x - 7y = - 23\end{array} \right.\) có nghiệm là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Chọn B
Giải hệ phương trình trên ta được \(x = - 1;y = 3.\)
Chú ý: Ta cũng có thể thay các giá trị của x và y ở các phương án và các phương trình đã cho. Tuy nhiên, cách này chỉ tối ưu khi việc giải hệ phương trình trên gặp khó khăn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn A
Ta có \[\left\{ \begin{array}{l}x + 2y = m + 3\\2x - 3y = m\end{array} \right.\]
\[\left\{ \begin{array}{l}2x + 4y = 2m + 6\\2x - 3y = m\end{array} \right.\]
\[\left\{ \begin{array}{l}x + 2y = m + 3\\7y = m + 6\end{array} \right.\]
\[\left\{ \begin{array}{l}x = \frac{{5m + 9}}{7}\\y = \frac{{m + 6}}{7}\end{array} \right.\]
Hệ phương trình có nghiệm duy nhất \[(x;y) = \left( {\frac{{5m + 9}}{7};\frac{{m + 6}}{7}} \right)\]
Lại có \[x + y = - 3\] hay \[\frac{{5m + 9}}{7} + \frac{{m + 6}}{7} = - 3\]
\[5m + 9 + m + 6 = - 21\]
\[6m = - 36\]
\[m = - 6\]
Vậy với \[m = - 6\] thì hệ phương trình có nghiệm duy nhất \[(x,y)\] thỏa mãn \[x + y = - 3\].

Câu 2

Lời giải

Chọn A
Nhân 2 vào phương trình thứ nhất của hệ ta có: \(\left\{ \begin{array}{l}6x - 2y = 10\\\left( {{m^2} - 7m + 6} \right)x - 2y = 10\end{array} \right.\)
Hệ có vô số nghiệm khi \({m^2} - 7m + 6 = 6\) nên \(m \in {\rm{\{ }}0;7{\rm{\} }}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP