Câu hỏi:

14/04/2025 62

Hệ phương trình \(\left\{ \begin{array}{l}x + 3y = 8\\2x - 7y = - 23\end{array} \right.\) có nghiệm là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Chọn B
Giải hệ phương trình trên ta được \(x = - 1;y = 3.\)
Chú ý: Ta cũng có thể thay các giá trị của x và y ở các phương án và các phương trình đã cho. Tuy nhiên, cách này chỉ tối ưu khi việc giải hệ phương trình trên gặp khó khăn.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Tìm giá trị của tham số \(m\)để hệ phương trình sau vô số nghiệm: \(\left\{ \begin{array}{l}3x - y = 5\\\left( {{m^2} - 7m + 6} \right)x - 2y = 10\end{array} \right.\)

Lời giải

Chọn A
Nhân 2 vào phương trình thứ nhất của hệ ta có: \(\left\{ \begin{array}{l}6x - 2y = 10\\\left( {{m^2} - 7m + 6} \right)x - 2y = 10\end{array} \right.\)
Hệ có vô số nghiệm khi \({m^2} - 7m + 6 = 6\) nên \(m \in {\rm{\{ }}0;7{\rm{\} }}\).

Câu 2

Có bao nhiêu giá trị của tham số \(k\) để \(x = - 1,y = 2\) là một nghiệm của hệ phương trình: \(\left\{ \begin{array}{l}x - 2y = - 5\\x + \left( {{k^2} - 6k + 4} \right)y = 7\end{array} \right.\)

Lời giải

Chọn C
\(x = - 1,y = 2\) luôn thoả mãn phương trình thứ nhất. Thay \(x = - 1,y = 2\) vào phương trình thứ hai ta được \( - 1 + \left( {{k^2} - 6k + 4} \right).2 = 7\) hay \({k^2} - 6k + 4 = 4\) nên \[k\left( {k - 6} \right) = 0\]nên \[k = 0\]hoặc \[k = 6\]. Vạy có 2 giá trị của k thoả mãn.

Câu 3

Cho hệ phương trình \[\left\{ \begin{array}{l}x + 2y = m + 3\\2x - 3y = m\end{array} \right.\] (\(m\)là tham số). Tìm \(m\) để hệ có nghiệm duy nhất \((x;y)\) thỏa mãn \(x + y = - 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Trong các hệ phương trình sau, hệ nào không phải là hệ phương trình bậc nhất hai ẩn?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Có bao nhiêu giá trị của tham số m để hệ phương trình sau có vô nghiệm: \(\left\{ \begin{array}{l}x + my = 3\\mx + 4y = - 1\end{array} \right.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho hệ phương trình \(\left\{ \begin{array}{l}2x + ay = - 4\\ax - 3y = 5\end{array} \right.\). Hệ phương trình có nghiệm duy nhất khi:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Hệ phương trình \(\left\{ \begin{array}{l}2x + {b_1}y = 1\\ - 3x + {b_2}y = 5\end{array} \right.\) có nghiệm duy nhất khi:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay