Tìm giá trị của tham số \(k\)để hai hệ phương trình sau có cùng giá trị nghiệm: \(\left( I \right)\left\{ \begin{array}{l}2x - 3y = 9\\x + y = 2\end{array} \right.\) và \(\left( {II} \right)\left\{ \begin{array}{l}3x + 4y = 5\\\left( {k + 2} \right)x - y = 25\end{array} \right.\)
Quảng cáo
Trả lời:
Giải hệ phương trình (I) ta được nghiệm\[x = 3\]; \[y = - 1\] thay vào hệ (II) ta được
\(\left\{ \begin{array}{l}3.3 + 4.( - 1) = 5\\\left( {k + 2} \right).3 - ( - 1) = 25\end{array} \right.\). Phương trình thứ nhất của hệ (II) đúng, phương trình thứ hai của hệ (II) có \[k + 2 = 8\] nên \[k = 6\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[\left\{ \begin{array}{l}x + 2y = m + 3\\2x - 3y = m\end{array} \right.\]
\[\left\{ \begin{array}{l}2x + 4y = 2m + 6\\2x - 3y = m\end{array} \right.\]
\[\left\{ \begin{array}{l}x + 2y = m + 3\\7y = m + 6\end{array} \right.\]
\[\left\{ \begin{array}{l}x = \frac{{5m + 9}}{7}\\y = \frac{{m + 6}}{7}\end{array} \right.\]
Hệ phương trình có nghiệm duy nhất \[(x;y) = \left( {\frac{{5m + 9}}{7};\frac{{m + 6}}{7}} \right)\]
Lại có \[x + y = - 3\] hay \[\frac{{5m + 9}}{7} + \frac{{m + 6}}{7} = - 3\]
\[5m + 9 + m + 6 = - 21\]
\[6m = - 36\]
\[m = - 6\]
Vậy với \[m = - 6\] thì hệ phương trình có nghiệm duy nhất \[(x,y)\] thỏa mãn \[x + y = - 3\].
Lời giải
Nhân 2 vào phương trình thứ nhất của hệ ta có: \(\left\{ \begin{array}{l}6x - 2y = 10\\\left( {{m^2} - 7m + 6} \right)x - 2y = 10\end{array} \right.\)
Hệ có vô số nghiệm khi \({m^2} - 7m + 6 = 6\) nên \(m \in {\rm{\{ }}0;7{\rm{\} }}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.