Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = (x – 2)2 – 1, trục hoành và hai đường thẳng x = 1; x = 2 bằng
Quảng cáo
Trả lời:

Đáp án đúng là: B
Ta có \(S = \int\limits_1^2 {\left| {{{\left( {x - 2} \right)}^2} - 1} \right|dx} = - \int\limits_1^2 {\left( {{x^2} - 4x + 3} \right)dx = - } \left. {\left( {\frac{{{x^3}}}{3} - 2{x^2} + 3x} \right)} \right|_1^2 = \frac{2}{3}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Ta có \(S = \int\limits_0^2 {\left| {{x^2} - x} \right|dx} = \int\limits_0^1 {\left| {{x^2} - x} \right|dx} + \int\limits_1^2 {\left| {{x^2} - x} \right|dx} \)\( = - \int\limits_0^1 {\left( {{x^2} - x} \right)dx} + \int\limits_1^2 {\left( {{x^2} - x} \right)dx} \).
Lời giải
Đáp án đúng là: A
Có \(S = \int\limits_{ - 1}^2 {\left| {4 + 2x - {x^2} - {x^2}} \right|dx} = \int\limits_{ - 1}^2 {\left( {4 + 2x - 2{x^2}} \right)dx} = \left. {\left( {4x + {x^2} - \frac{{2{x^3}}}{3}} \right)} \right|_{ - 1}^2 = 9\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.