Câu hỏi:

07/05/2025 122

Trong không gian Oxyz, cho hai điểm M(3; −2; 5), N(−1; 6; −3). Mặt cầu đường kính MN có phương trình là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Tâm I của mặt cầu là trung điểm của MN I(1; 2; 1).

Bán kính mặt cầu \(R = \frac{{MN}}{2} = \frac{{\sqrt {{{\left( { - 1 - 3} \right)}^2} + {{\left( {6 + 2} \right)}^2} + {{\left( { - 3 - 5} \right)}^2}} }}{2} = 6\).

Vậy phương trình mặt cầu là (x − 1)2 + (y − 2)2 + (z − 1)2 = 36.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Trong không gian Oxyz, cho hai điểm A(2; 1; 1), B(0; 3; −1). Mặt cầu (S) có đường kính AB có phương trình là

Lời giải

Đáp án đúng là: B

Tâm I là trung điểm AB I(1; 2; 0) và bán kính \(R = IA = \sqrt 3 \).

Phương trình mặt cầu: (x − 1)2 + (y − 2)2 + z2 = 3.

Câu 2

Trong không gian Oxyz, cho hai điểm A(−2; 1; 0), B(2; −1; 2). Phương trình của mặt cầu có đường kính AB là

Lời giải

Đáp án đúng là: C

Mặt cầu đường kính AB có tâm I(0; 0; 1) là trung điểm của AB và mặt cầu có bán kính \(R = \frac{{AB}}{2} = \frac{{\sqrt {{4^2} + {{\left( { - 2} \right)}^2} + {2^2}} }}{2} = \sqrt 6 \).

Vậy phương trình mặt cầu là x2 + y2 + (z − 1)2 = 6.

Câu 3

Trong không gian Oxyz, cho hai điểm A(1; 1; 1) và B(1; −1; 3). Phương trình mặt cầu có đường kính AB là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; −2; 7), B(−3; 8; −1). Mặt cầu đường kính AB có phương trình là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Trong không gian Oxyz, cho hai điểm A(2; 4; 1), B(−2; 2; −3). Phương trình mặt cầu đường kính AB là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Trong không gian Oxyz, phương trình của mặt cầu có đường kính AB với A(2; 1; 0) và B(0; 1; 2) là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay