Quảng cáo
Trả lời:
Lời giải:
Có: p2 ≡ ±1 (mod5)
⇒ p4 ≡ 1 (mod5)
Gọi n là số các số 5 ở VT. Xét các trường hợp sau:
+ Nếu n = 0 thì VT ≡ 1 + 1 + ... + 1 ≡ 5 (mod5)
Mà VP ⋮̸ 5
⇒ VT = VP (vô lí)
+ Nếu n = 5 thì a = b = c = d = e = 5. Thử lại thì hoàn toàn đúng
Nếu 1 ≤ n ≤ 4 thì VP ⋮ 5 và VT ≡ 5−n (mod5)
Do 1 ≤ n ≤ 4 ⇒ 5 – n ≢ 0 (mod5)
Vậy a = b = c = d = e = 5
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Các ước của 115 là 1;5; 23; 115.
Nên các ước lớn hơn 10 của 115 là 23; 115.
Lời giải
Lời giải:
G = x2 – x + 2y2 – 4y + 3
G = \({\left( {x - \frac{1}{2}} \right)^2} + 2{\left( {y - 1} \right)^2} + \frac{3}{4}\)
Vì \({\left( {x - \frac{1}{2}} \right)^2} + 2{\left( {y - 1} \right)^2} \ge 0,\forall x,y \Rightarrow {\left( {x - \frac{1}{2}} \right)^2} + 2{\left( {y - 1} \right)^2} + \frac{3}{4} \ge \frac{3}{4},\forall x,y\)
Vậy GTNN của G là \(\frac{3}{4}\) khi \(\left\{ \begin{array}{l}x = \frac{1}{2}\\y = 1\end{array} \right.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.