Câu hỏi:

10/05/2025 34 Lưu

Tìm các số nguyên tố a, b, c, d, e sao cho: a4 + b4 + c4 + d4 + e4 = abcde

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Có: p2 ≡ ±1 (mod5)

p4 ≡ 1 (mod5)

Gọi n là số các số 5 ở VT. Xét các trường hợp sau:

+ Nếu n = 0 thì VT ≡ 1 + 1 + ... + 1 ≡ 5 (mod5)

Mà VP ̸ 5

VT = VP (vô lí)

+ Nếu n = 5 thì a = b = c = d = e = 5. Thử lại thì hoàn toàn đúng

Nếu 1 ≤ n ≤ 4 thì VP 5  và VT ≡ 5−n (mod5)

Do 1 ≤ n ≤ 4 5 – n ≢ 0 (mod5)

Vậy a = b = c = d = e = 5

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

(3x – 7)2 – 4(x + 1)2 = 0

(3x – 7)2 – [2(x + 1)]2 = 0

(3x – 7)2 – (2x + 2)2 = 0

(3x – 7 + 2x + 2)(3x – 7 – 2x – 2) = 0

(5x – 5)(x – 9) = 0

\(\left[ \begin{array}{l}x = 1\\x = 9\end{array} \right.\)

Vậy x = 1 hoặc x = 9.

Lời giải

Lời giải:

y′ = −3x2 + 6(m + 1)x − 3m2 − 7m + 1

Hàm có cực tiểu khi và chỉ khi y′ = 0 có 2 nghiệm phân biệt

Δ′ = 9m2 + 18m + 9 + 3(−3m2 − 7m + 1) > 0

−3m + 12 > 0

m < 4

Giả sử x1 < x2 là 2 nghiệm, khi đó a = -1 < 0 nên x1 là điểm cực tiểu

Suy ra: \(\frac{{ - 3\left( {m + 1} \right) - \sqrt {12 - 4m} }}{{ - 3}} < 1\)

\(3m + 3 + \sqrt {12 - 4m} > 3\)

\(\sqrt {12 - 4m} > 3\)

\(\left[ \begin{array}{l}m > 0\\\left\{ \begin{array}{l}m \le 0\\12 - 4m > 9{m^2}\end{array} \right.\end{array} \right. \Rightarrow \frac{{ - 2 - 4\sqrt 7 }}{9} < m < 4\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP