Quảng cáo
Trả lời:

Lời giải:
\(\frac{1}{a} - \frac{1}{b} = \frac{1}{{a - b}}\)
⇔ \(\frac{{b - a}}{{ab}} = - \frac{1}{{b - a}}\)
⇔ (b – a)2 = –ab
⇔ a2 – ab + b2 = 0
⇔ \({\left( {a - \frac{b}{2}} \right)^2} + \frac{{3{b^2}}}{4} = 0\) (*)
Ta thấy \[{\left( {a - \frac{b}{2}} \right)^2} + \frac{{3{b^2}}}{4} \ge 0,\forall a,b \in \mathbb{Z}\] nên để (*) xảy ra thì:
\(\left\{ \begin{array}{l}a - \frac{b}{2} = 0\\\frac{{3{b^2}}}{4} = 0\end{array} \right. \Leftrightarrow a = b = 0\)
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
G = x2 – x + 2y2 – 4y + 3
G = \({\left( {x - \frac{1}{2}} \right)^2} + 2{\left( {y - 1} \right)^2} + \frac{3}{4}\)
Vì \({\left( {x - \frac{1}{2}} \right)^2} + 2{\left( {y - 1} \right)^2} \ge 0,\forall x,y \Rightarrow {\left( {x - \frac{1}{2}} \right)^2} + 2{\left( {y - 1} \right)^2} + \frac{3}{4} \ge \frac{3}{4},\forall x,y\)
Vậy GTNN của G là \(\frac{3}{4}\) khi \(\left\{ \begin{array}{l}x = \frac{1}{2}\\y = 1\end{array} \right.\)
Lời giải
Lời giải:
(x + 5)2 - (x - 5)2 - 2x + 1 = 0
⇔ x2 + 10x + 25 – (x2 – 10x + 25) – 2x + 1 = 0
⇔ x2 + 10x + 25 – x2 + 10x – 25 – 2x + 1 = 0
⇔ 20x – 2x + 1 = 0
⇔ 18x + 1 = 0
⇔ \(x = - \frac{1}{{18}}\)
Vậy \(x = - \frac{1}{{18}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.