Cho A là số chính phương gồm 4 chữ số. Nếu ta thêm vào mỗi chữ số của A 1 đơn vị thì ta được số chính phương B. Tìm A và B
Cho A là số chính phương gồm 4 chữ số. Nếu ta thêm vào mỗi chữ số của A 1 đơn vị thì ta được số chính phương B. Tìm A và B
Quảng cáo
Trả lời:
Lời giải:
Gọi \(A = \overline {abcd} = {k^2}\)
Nếu thêm vào mỗi chữ số của A một đơn vị ta có số:
\(B = \overline {\left( {a + 1} \right)\left( {b + 1} \right)\left( {c + 1} \right)\left( {d + 1} \right)} = {m^2}\left( {k,m \in \mathbb{N};32 < k < m < 100;0 < a,b,c,d < 10} \right)\)
\[\left\{ \begin{array}{l}A = \overline {abcd} = {k^2}\\B = \overline {abcd} + 1111 = {m^2}\end{array} \right.\]
Suy ra: m2 – k2 = 1111 ⇔ (m – k)(m + k) = 1111 (*)
Nhận xét thấy tích (m – k)(m + k) > 0 nên m – k và m + k là hai số nguyên dương
Vì m – k < m + k < 200 nên (*) có thể biết (m – k)(m + k) = 11.101
Suy ra: \(\left\{ \begin{array}{l}m - k = 11\\m + k = 101\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 56\\k = 45\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}B = {56^2} = 3136\\A = {k^2} = 2025\end{array} \right.\)
Vậy A = 2025; B = 3136.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
(3x – 7)2 – 4(x + 1)2 = 0
⇔ (3x – 7)2 – [2(x + 1)]2 = 0
⇔ (3x – 7)2 – (2x + 2)2 = 0
⇔ (3x – 7 + 2x + 2)(3x – 7 – 2x – 2) = 0
⇔ (5x – 5)(x – 9) = 0
⇔ \(\left[ \begin{array}{l}x = 1\\x = 9\end{array} \right.\)
Vậy x = 1 hoặc x = 9.
Lời giải
Lời giải:
y′ = −3x2 + 6(m + 1)x − 3m2 − 7m + 1
Hàm có cực tiểu khi và chỉ khi y′ = 0 có 2 nghiệm phân biệt
⇔ Δ′ = 9m2 + 18m + 9 + 3(−3m2 − 7m + 1) > 0
⇔ −3m + 12 > 0
⇒ m < 4
Giả sử x1 < x2 là 2 nghiệm, khi đó a = -1 < 0 nên x1 là điểm cực tiểu
Suy ra: \(\frac{{ - 3\left( {m + 1} \right) - \sqrt {12 - 4m} }}{{ - 3}} < 1\)
⇔ \(3m + 3 + \sqrt {12 - 4m} > 3\)
⇔ \(\sqrt {12 - 4m} > 3\)
⇔ \(\left[ \begin{array}{l}m > 0\\\left\{ \begin{array}{l}m \le 0\\12 - 4m > 9{m^2}\end{array} \right.\end{array} \right. \Rightarrow \frac{{ - 2 - 4\sqrt 7 }}{9} < m < 4\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.