Cho số thực x thỏa mãn 0 < x < 3. Tìm GTNN của biểu thức \(A = \frac{4}{{3 - x}} + \frac{{100}}{x} + 2024\)
Cho số thực x thỏa mãn 0 < x < 3. Tìm GTNN của biểu thức \(A = \frac{4}{{3 - x}} + \frac{{100}}{x} + 2024\)
Quảng cáo
Trả lời:

Lời giải:
\(A = \frac{4}{{3 - x}} + \frac{{100}}{x} + 2024\)
\(A = \frac{{{2^2}}}{{3 - x}} + \frac{{{{10}^2}}}{x} + 2024\)
\(A \ge \frac{{{2^2} + {{10}^2}}}{{3 - x + x}} + 2024\)
\(A \ge 2072\)
Vậy GTNN của A là 2072 khi \(\frac{2}{{3 - x}} = \frac{{10}}{x} \Leftrightarrow x = \frac{5}{2}\)
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
G = x2 – x + 2y2 – 4y + 3
G = \({\left( {x - \frac{1}{2}} \right)^2} + 2{\left( {y - 1} \right)^2} + \frac{3}{4}\)
Vì \({\left( {x - \frac{1}{2}} \right)^2} + 2{\left( {y - 1} \right)^2} \ge 0,\forall x,y \Rightarrow {\left( {x - \frac{1}{2}} \right)^2} + 2{\left( {y - 1} \right)^2} + \frac{3}{4} \ge \frac{3}{4},\forall x,y\)
Vậy GTNN của G là \(\frac{3}{4}\) khi \(\left\{ \begin{array}{l}x = \frac{1}{2}\\y = 1\end{array} \right.\)
Lời giải
Lời giải:
(x + 5)2 - (x - 5)2 - 2x + 1 = 0
⇔ x2 + 10x + 25 – (x2 – 10x + 25) – 2x + 1 = 0
⇔ x2 + 10x + 25 – x2 + 10x – 25 – 2x + 1 = 0
⇔ 20x – 2x + 1 = 0
⇔ 18x + 1 = 0
⇔ \(x = - \frac{1}{{18}}\)
Vậy \(x = - \frac{1}{{18}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.