Một lớp học có 40 học sinh trong đó có 30 học sinh giỏi toán, 25 học sinh giỏi giỏi tiếng việt, 2 học sinh không giỏi môn nào. Hỏi lớp đó có bao nhiêu học sinh giỏi cả toán và tiếng việt?
Một lớp học có 40 học sinh trong đó có 30 học sinh giỏi toán, 25 học sinh giỏi giỏi tiếng việt, 2 học sinh không giỏi môn nào. Hỏi lớp đó có bao nhiêu học sinh giỏi cả toán và tiếng việt?
Quảng cáo
Trả lời:
Lời giải:
Số học sinh học giỏi ít nhất 1 môn toán hoặc tiếng việt là:
40 - 2 = 38 (học sinh)
Nếu mỗi bạn chỉ thích 1 môn thì có tất cả số học sinh là:
30 + 25 = 55 (học sinh)
Vậy thì thừa ra số học sinh chính là số học sinh giỏi cả toán và tiếng việt là:
55 - 38 = 17 (học sinh)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
G = x2 – x + 2y2 – 4y + 3
G = \({\left( {x - \frac{1}{2}} \right)^2} + 2{\left( {y - 1} \right)^2} + \frac{3}{4}\)
Vì \({\left( {x - \frac{1}{2}} \right)^2} + 2{\left( {y - 1} \right)^2} \ge 0,\forall x,y \Rightarrow {\left( {x - \frac{1}{2}} \right)^2} + 2{\left( {y - 1} \right)^2} + \frac{3}{4} \ge \frac{3}{4},\forall x,y\)
Vậy GTNN của G là \(\frac{3}{4}\) khi \(\left\{ \begin{array}{l}x = \frac{1}{2}\\y = 1\end{array} \right.\)
Lời giải
Lời giải:
Các ước của 115 là 1;5; 23; 115.
Nên các ước lớn hơn 10 của 115 là 23; 115.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.