Quảng cáo
Trả lời:
Lời giải:
Đặt A = 1 + n2017 + n2018
Với n = 1 ⇒ A = 3 là số nguyên tố (chọn)
Với n > 1 ta có:
A = 1 + n2017 + n2018
= n2018 – n2 + n2017 – n + (n2 + n + 1)
= n2(n2016 – 1) + n(n2016 – 1) + (n2 + n + 1)
= (n2016 – 1)(n2 + n) + (n2 + n + 1)
Mà : n2016−1 = (n3)672 – 1 = (n3 − 1)[(n3)671 + (n3)670 + ... + n3 + 1] ⋮ n3 − 1
⇒ (n2016−1) ⋮ (n2 + n + 1)
⇒A ⋮ (n2 + n + 1)
Ta lại có : 1 < (n2 + n + 1) < Anên A là số nguyên tố
Vậy n = 1 là số nguyên dương duy nhất thỏa mãn điều kiện đề bài
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Các ước của 115 là 1;5; 23; 115.
Nên các ước lớn hơn 10 của 115 là 23; 115.
Lời giải
Lời giải:
G = x2 – x + 2y2 – 4y + 3
G = \({\left( {x - \frac{1}{2}} \right)^2} + 2{\left( {y - 1} \right)^2} + \frac{3}{4}\)
Vì \({\left( {x - \frac{1}{2}} \right)^2} + 2{\left( {y - 1} \right)^2} \ge 0,\forall x,y \Rightarrow {\left( {x - \frac{1}{2}} \right)^2} + 2{\left( {y - 1} \right)^2} + \frac{3}{4} \ge \frac{3}{4},\forall x,y\)
Vậy GTNN của G là \(\frac{3}{4}\) khi \(\left\{ \begin{array}{l}x = \frac{1}{2}\\y = 1\end{array} \right.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.