Câu hỏi:

18/05/2025 106 Lưu

Tập nghiệm của phương trình \[\sin 2x = \sin x\] là

A. \[S = \left\{ {k2{\rm{\pi }};\frac{{\rm{\pi }}}{3} + k2{\rm{\pi }}\left| {k \in \mathbb{Z}} \right.} \right\}\].                       
B. \[S = \left\{ {k2{\rm{\pi }};\frac{{\rm{\pi }}}{3} + \frac{{k2{\rm{\pi }}}}{3}\left| {k \in \mathbb{Z}} \right.} \right\}\].
C. \[S = \left\{ {k2{\rm{\pi }}; - \frac{{\rm{\pi }}}{3} + k2{\rm{\pi }}\left| {k \in \mathbb{Z}} \right.} \right\}\].                        
D. \[S = \left\{ {k2{\rm{\pi }};{\rm{\pi }} + k2{\rm{\pi }}\left| {k \in \mathbb{Z}} \right.} \right\}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Ta có \[\sin 2x = \sin x\]\[ \Leftrightarrow \left[ \begin{array}{l}2x = x + k2{\rm{\pi }}\\2x = {\rm{\pi }} - x + k2{\rm{\pi }}\end{array} \right.\]\[ \Leftrightarrow \left[ \begin{array}{l}x = k2{\rm{\pi }}\\x = \frac{{\rm{\pi }}}{3} + \frac{{k2{\rm{\pi }}}}{3}\end{array} \right.\] \[\left( {k \in \mathbb{Z}} \right)\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Khi vật đi qua vị trí cân bằng thì \(x = 0\), ta có:

\(2\cos \left( {5t - \frac{\pi }{6}} \right) = 0\)\( \Leftrightarrow \cos \left( {5t - \frac{\pi }{6}} \right) = 0\)\( \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi \), \(k \in \mathbb{Z}\)

\( \Leftrightarrow 5t = \frac{{2\pi }}{3} + k\pi \) , \(k \in \mathbb{Z}\)\( \Leftrightarrow t = \frac{{2\pi }}{{15}} + \frac{{k\pi }}{5}\),\(k \in \mathbb{Z}\).

Trong khoảng thời gian từ 0 đến 6 giây, ta có: \(0 \le \frac{{2\pi }}{{15}} + \frac{{k\pi }}{5} \le 6\)\( \Leftrightarrow \frac{{ - 2}}{3} \le k \le \frac{{90 - 2\pi }}{{3\pi }}\).

Vì kk0;1;2;3;4;5;6;7;8

Vậy trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng 9 lần.

Đáp án: \(9\).

Lời giải

Ta có \(\tan \left( {2x - 15^\circ } \right) = 1 \Leftrightarrow 2x - 15^\circ  = 45^\circ  + k90^\circ  \Leftrightarrow x = 30^\circ  + k90^\circ \,\,\left( {k \in \mathbb{Z}} \right)\).

Với \(k =  - 1\), ta có \(x =  - 60^\circ \) là nghiệm âm lớn nhất của phương trình (*).

\( - 180^\circ  < x < 90^\circ  \Rightarrow  - 180^\circ  < 30^\circ  + k90^\circ  < 90^\circ \,\,\left( {k \in \mathbb{Z}} \right) \Rightarrow k \in \left\{ { - 2; - 1;0} \right\}\)\( \Rightarrow \left[ {\begin{array}{*{20}{l}}{x =  - 150^\circ }\\{x =  - 60^\circ }\\{x = 30^\circ }\end{array}} \right.\).

Đáp án:           a) Đúng,          b) Sai,             c) Sai,              d) Sai.

Câu 6

A. 4.                               
B. 1.                              
C. 2.                                    
D. 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(m \le 1\).                  
B. \(m \ge  - 1\).            
C. \( - 1 \le m \le 1\).                              
D. \(m \le  - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP