Câu hỏi:
18/05/2025 42Số giờ có ánh sáng mặt trời của một thành phố \(A\) trong ngày thứ \(t\) (ở đây \(t\) là số ngày tính từ ngày 1 tháng 1) của năm \(2024\) được cho bởi hàm số \(f\left( t \right) = 12 + 2,83\sin \left( {\frac{\pi }{{182}}\left( {t - 80} \right)} \right)\), \[t \in {\mathbb{N}^*}\] và \(0 < t \le 366\). Hỏi vào ngày nào trong tháng 6 thì thành phố \(A\) có nhiều giờ có ánh sáng mặt trời nhất?
Quảng cáo
Trả lời:
Ta có \( - 1 \le \sin \left( {\frac{\pi }{{182}}\left( {t - 80} \right)} \right) \le 1\)\( \Leftrightarrow 9,17 \le 12 + 2,83\sin \left( {\frac{\pi }{{182}}\left( {t - 80} \right)} \right) \le 14,83\).
Như vậy có thể thấy số giờ có ánh sáng mặt trời nhiều nhất là \(14,83\) (giờ) và xảy ra khi
\(\sin \left( {\frac{\pi }{{182}}\left( {t - 80} \right)} \right) = 1\)\( \Leftrightarrow \frac{\pi }{{182}}\left( {t - 80} \right) = \frac{\pi }{2} + k2\pi ,\,\,\,\left( {k \in \mathbb{Z}} \right)\)\( \Leftrightarrow t - 80 = 91 + 366k\)\( \Leftrightarrow t = 171 + 366k\)
Vì \(0 < t \le 366\) nên \(0 < 171 + 366k \le 366\)\( \Leftrightarrow - \frac{{171}}{{366}} < k \le \frac{{195}}{{366}}\)\( \Rightarrow k = 0\) vì \(k \in \mathbb{Z}\).
Với \(k = 0\)\( \Rightarrow t = 171\).
Có thể thấy năm 2024 là năm nhuận, nên với \(t = 171\) thì ngày có số giờ ánh sáng mặt trời nhiều nhất là ngày 19 tháng 6.
Đáp án: \(19\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Khi vật đi qua vị trí cân bằng thì \(x = 0\), ta có:
\(2\cos \left( {5t - \frac{\pi }{6}} \right) = 0\)\( \Leftrightarrow \cos \left( {5t - \frac{\pi }{6}} \right) = 0\)\( \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi \), \(k \in \mathbb{Z}\)
\( \Leftrightarrow 5t = \frac{{2\pi }}{3} + k\pi \) , \(k \in \mathbb{Z}\)\( \Leftrightarrow t = \frac{{2\pi }}{{15}} + \frac{{k\pi }}{5}\),\(k \in \mathbb{Z}\).
Trong khoảng thời gian từ 0 đến 6 giây, ta có: \(0 \le \frac{{2\pi }}{{15}} + \frac{{k\pi }}{5} \le 6\)\( \Leftrightarrow \frac{{ - 2}}{3} \le k \le \frac{{90 - 2\pi }}{{3\pi }}\).
Vì
Vậy trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng 9 lần.
Đáp án: \(9\).
Lời giải
Ta có: \(2\sin \left( {x - \frac{\pi }{{12}}} \right) + \sqrt 3 = 0 \Leftrightarrow \sin \left( {x - \frac{\pi }{{12}}} \right) = - \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {x - \frac{\pi }{{12}}} \right) = \sin \left( { - \frac{\pi }{3}} \right)\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x - \frac{\pi }{{12}} = - \frac{\pi }{3} + k2\pi }\\{x - \frac{\pi }{{12}} = \pi - \left( { - \frac{\pi }{3}} \right) + k2\pi }\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - \frac{\pi }{4} + k2\pi }\\{x = \frac{{17\pi }}{{12}} + k2\pi }\end{array}\left( {k \in \mathbb{Z}} \right)} \right.} \right.\).
Vậy phương trình có nghiệm là: \[x = - \frac{\pi }{4} + k2\pi ;\,\,x = \frac{{17\pi }}{{12}} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\].
Phương trình có nghiệm âm lớn nhất bằng \( - \frac{\pi }{4}\).
Số nghiệm của phương trình trong khoảng \(\left( { - \pi ;\pi } \right)\) là hai nghiệm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
10 Bài tập Biểu diễn góc lượng giác trên đường tròn lượng giác (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
33 câu trắc nghiệm Toán 11 Kết nối tri thức Bài 29: Công thức cộng xác suất có đáp án