Câu hỏi:

19/05/2025 82 Lưu

PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI

Cho biết \(\sin \alpha = \frac{1}{2}\)\(\frac{\pi }{2} < \alpha < \pi \).

a) \(\cos \alpha > 0\).

b) \(\cos \alpha = \frac{{\sqrt 3 }}{2}\).

c) \(\sin 2\alpha = \frac{{ - \sqrt 3 }}{2}\).

d) \(\cos 2\alpha = \sin \alpha \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\({\rm{V\`i  }}\frac{\pi }{2} < \alpha  < \pi {\rm{ n\^e n }}\cos \alpha  < 0.{\rm{ }}\)

Ta có \({\cos ^2}\alpha  = 1 - {\sin ^2}\alpha  = 1 - \frac{1}{4} = \frac{3}{4} \Rightarrow \cos \alpha  =  - \frac{{\sqrt 3 }}{2}\) (vì\(\cos \alpha  < 0\)).

Ta có \(\sin 2\alpha  = 2\sin \alpha \cos \alpha  = 2 \cdot \frac{1}{2} \cdot \left( { - \frac{{\sqrt 3 }}{2}} \right) =  - \frac{{\sqrt 3 }}{2}\).

\(\cos 2\alpha  = 1 - 2{\sin ^2}\alpha  = 1 - 2 \cdot {\left( {\frac{1}{2}} \right)^2} = \frac{1}{2}\). Suy ra \(\cos 2\alpha  = \sin \alpha \).

Đáp án:           a) Sai,             b) Sai,             c) Đúng,          d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có cos5x=cosx+π45x=x+π4+k2π5x=xπ4+k2π4x=π4+k2π6x=π4+k2πx=π16+kπ2x=π24+kπ3k

+ Với nghiệm \(x = \frac{\pi }{{16}} + k\frac{\pi }{2}\) ta có: \( - 2024 \le \frac{\pi }{{16}} + k\frac{\pi }{2} \le 2024 \Leftrightarrow \left\{ \begin{array}{l} - 1288,6 \le k \le 1288,4\\k \in \mathbb{Z}\end{array} \right.\).

Suy ra có 2577 nghiệm thoả mãn.

+ Với nghiệm \(x = - \frac{\pi }{{24}} + k\frac{\pi }{3}\) ta có: \( - 2024 \le - \frac{\pi }{{24}} + k\frac{\pi }{3} \le 2024 \Leftrightarrow \left\{ \begin{array}{l} - 1932,7 \le k \le 1932,9\\k \in \mathbb{Z}\end{array} \right.\).

Suy ra có 3865 nghiệm thoả mãn.

Vậy có 6442 nghiệm thoả mãn.

Đáp án: 6442.

Lời giải

Ta có \(h = \left| x \right| = \left| {1,5\cos \left( {\frac{{t\pi }}{4}} \right)} \right| \le 1,5\).

Vật ở xa vị trí cân bằng nhất nghĩa là \(h = 1,5\,\;{\rm{m}}\).

Khi đó, \(\cos \left( {\frac{{t\pi }}{4}} \right) =  \pm 1 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\frac{{t\pi }}{4} = k2\pi }\\{\frac{{t\pi }}{4} = \pi  + k2\pi }\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{t = 8k}\\{t = 4 + 8k}\end{array}\left( {k \in \mathbb{Z}} \right)} \right.} \right.\).

Vậy trong 10 giây đầu tiên thì vật ở xa vị trí cân bằng nhất tại các thời điểm \(t = 0,t = 4,t = 8\) (giây).

Khi vật ở vị trí cân bằng thì \(x = 0 \Leftrightarrow 1,5\cos \left( {\frac{{t\pi }}{4}} \right) = 0 \Leftrightarrow \cos \left( {\frac{{t\pi }}{4}} \right) = 0\)

\( \Leftrightarrow \frac{{t\pi }}{4} = \frac{\pi }{2} + k\pi  \Rightarrow t = 2 + 4k\,\,\left( {k \in \mathbb{Z}} \right)\).

Vậy trong khoảng từ 0 đến 20 giây thì vật ở vị trí cân bằng tại các thời điểm \(t = 2,\,t = 6,\)\(t = 10,t = 14,t = 18\) (giây); tức là có 5 lần vật qua vị trí cân bằng.

Đáp án:           a) Đúng,          b) Sai,             c) Đúng,          d) Sai.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP