Câu hỏi:

23/05/2025 27

Một công ty tổ chức chương trình bốc thăm trúng thưởng nhân dịp lễ 30/4 và 1/5 cho 100 nhân viên. Trong hộp có 100 vé, trong đó có 4 vé trúng thưởng tour du lịch miễn phí ở Thái Lan, 10 vé trúng thưởng tour du lịch miễn phí ở Đà Nẵng và 20 vé trúng thưởng tour du lịch miễn phí ở Cửa Lò (Nghệ An). Các vé còn lại trúng thưởng năm triệu đồng. Lần lượt từng nhân viên lên bốc ngẫu nhiên một vé (không hoàn lại).

a) Xác suất để người bốc thăm thứ nhất bốc được vé trúng thưởng năm triệu đồng là \[\frac{{33}}{{50}}\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đúng. Gọi \(A\) là biến cố: “Người bốc thăm thứ nhất bốc được vé trúng thưởng năm triệu đồng”. Khi đó hệ \(\left\{ {A\,;\,\overline A } \right\}\) là một hệ đầy đủ các biến cố.

Ta có \(n\left( A \right) = 100 - 4 - 10 - 20 = 66 \Rightarrow P\left( A \right) = \frac{{66}}{{100}} = \frac{{33}}{{50}}.\)

Câu hỏi cùng đoạn

Câu 2:

b) Xác suất để người bốc thăm thứ hai bốc được vé trúng thưởng năm triệu đồng là \[\frac{{13}}{{20}}\], biết rằng người bốc thăm thứ nhất bốc được vé trúng thưởng năm triệu đồng.

Xem lời giải

verified Lời giải của GV VietJack

b) Sai. Gọi \(B\) là biến cố: “Người bốc thăm thứ hai bốc được vé trúng thưởng năm triệu đồng”.

Khi đó, xác suất để người bốc thăm thứ hai bốc được vé trúng thưởng năm triệu đồng, biết rằng người bốc thăm thứ nhất bốc được vé trúng thưởng năm triệu đồng là \(P\left( {B|A} \right) = \frac{{65}}{{99}}\).

Câu 3:

c) Xác suất để người bốc thăm thứ hai bốc được vé trúng thưởng năm triệu đồng là \[\frac{{33}}{{50}}\].

Xem lời giải

verified Lời giải của GV VietJack

c) Đúng. Xác suất để người bốc thăm thứ hai bốc được vé trúng thưởng năm triệu đồng là \[P\left( B \right).\]

Áp dụng công thức xác suất toàn phần, ta có \[P\left( B \right) = P\left( A \right) \cdot P\left( {B|A} \right) + P\left( {\overline A } \right) \cdot P\left( {B|\overline A } \right)\].

Ta có \(P\left( {\overline A } \right) = 1 - \frac{{33}}{{50}} = \frac{{17}}{{50}}\), \[P\left( {B|\overline A } \right) = \frac{{66}}{{99}}\].

Vậy \[P\left( B \right) = P\left( A \right) \cdot P\left( {B|A} \right) + P\left( {\overline A } \right) \cdot P\left( {B|\overline A } \right) = \frac{{33}}{{50}} \cdot \frac{{65}}{{99}} + \frac{{17}}{{50}} \cdot \frac{{66}}{{99}} = \frac{{33}}{{50}}\].

Câu 4:

d) Để tạo bất ngờ cho người bốc thăm tiếp theo, sau khi người thứ nhất bốc thăm, người dẫn chương trình giữ lại vé và không công bố kết quả. Người bốc thăm thứ hai bốc được vé trúng thưởng năm triệu đồng. Xác suất để người bốc thăm thứ nhất bốc được vé trúng thưởng năm triệu đồng là \[\frac{{65}}{{99}}\].

Xem lời giải

verified Lời giải của GV VietJack

d) Đúng. Ta có \(P\left( {A|B} \right) = \frac{{P\left( {BA} \right)}}{{P\left( B \right)}} = \frac{{P\left( A \right) \cdot P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{\frac{{33}}{{50}} \cdot \frac{{65}}{{99}}}}{{\frac{{33}}{{50}}}} = \frac{{65}}{{99}}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

a) Nồng độ khí \(C{O_2}\) trong phòng tại thời điểm \(t = 0\) là 400 \(\left( {{\rm{ppm}}} \right)\).

Xem đáp án » 23/05/2025 35

Câu 2:

a) Hàm số \(V\left( t \right)\) là một nguyên hàm của hàm số \(f\left( t \right) = k \cdot \sqrt t \).

Xem đáp án » 23/05/2025 30

Câu 3:

Có hai người gọi điện thoại đến hai số điện thoại khác nhau nhưng đều quên mất chữ số cuối. Họ đều thử ngẫu nhiên các chữ số từ 0 đến 9 và không lặp lại các số đã thử. Tính xác suất để ít nhất một trong hai người đó gọi đúng số điện thoại đã quên mà không phải thử quá hai lần.

Xem đáp án » 23/05/2025 25

Câu 4:

a) Phương trình đường thẳng \(AB\)\(\left\{ \begin{array}{l}x = 4 - 3t\\y = - 5 + 7t\\z = 1 - t\end{array} \right.\).

Xem đáp án » 23/05/2025 24

Câu 5:

Trong lần đầu tiên nuôi gà, một trang trại do thiếu kinh nghiệm nên dự tính lượng thức ăn cho gà hằng ngày là không đổi và đã dự trữ thức ăn đủ dùng trong \[50\] ngày. Nhưng thực tế, theo sự phát triển của gà, để đảm bảo chất lượng thì kể từ ngày thứ 2 trở đi lượng thức ăn nuôi gà mỗi ngày của trang trại đã tăng thêm \[1\% \] so với ngày trước đó. Hỏi lượng thức ăn mà trang trại dự trữ đủ dùng cho gà ăn tối đa bao nhiêu ngày mà vẫn đảm bảo chất lượng ăn mỗi ngày? (lấy kết quả số ngày là số nguyên).

Xem đáp án » 23/05/2025 12

Câu 6:

Một tòa nhà có hình dạng là một hình chóp tứ giác đều có cạnh đáy là \(160\,{\rm{m}}\) và cạnh bên là \(140\,{\rm{m}}\). Giả sử, từ một mặt bên của tòa nhà ta cần thiết kế con đường ngắn nhất để di chuyển đến tâm của đáy tòa nhà, khi đó quãng đường ngắn nhất có độ dài khoảng bao nhiêu mét (làm tròn kết quả đến hàng phần chục)?

Xem đáp án » 23/05/2025 10
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay