Trong không gian \[Oxyz\] (đơn vị trên mỗi trục tọa độ là mét), một ngôi nhà như hình vẽ dưới đây có sàn nhà nằm ngang trên mặt phẳng \[\left( \alpha \right):2x + y - 3z + 18 = 0\]. Hai mái nhà lần lượt nằm trên các mặt phẳng \[\left( P \right):x - y = 0\], \[\left( Q \right):x + y - 2z = 0\]. Hỏi chiều cao của ngôi nhà tính từ sàn nhà đến nóc nhà (điểm cao nhất của mái nhà) là bao nhiêu mét (làm tròn kết quả đến hàng phần chục)?
Trong không gian \[Oxyz\] (đơn vị trên mỗi trục tọa độ là mét), một ngôi nhà như hình vẽ dưới đây có sàn nhà nằm ngang trên mặt phẳng \[\left( \alpha \right):2x + y - 3z + 18 = 0\]. Hai mái nhà lần lượt nằm trên các mặt phẳng \[\left( P \right):x - y = 0\], \[\left( Q \right):x + y - 2z = 0\]. Hỏi chiều cao của ngôi nhà tính từ sàn nhà đến nóc nhà (điểm cao nhất của mái nhà) là bao nhiêu mét (làm tròn kết quả đến hàng phần chục)?
Quảng cáo
Trả lời:
Đáp án: 4,8.
Cần tìm tọa độ một điểm thuộc đường thẳng giao tuyến của hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right)\].
Cho \[y = 0\], ta giải hệ phương trình: \[\left\{ \begin{array}{l}x = 0\\x - 2z = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\z = 0\end{array} \right.\].
Do đó gốc tọa độ \[O\left( {0;0;0} \right)\] thuộc đường thẳng giao tuyến của hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right)\].
Khi đó chiều cao từ sàn nhà đến nóc nhà là \(d\left( {O,\left( \alpha \right)} \right) = \frac{{18}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{9\sqrt {14} }}{7} \approx 4,8\,\,({\rm{m)}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 0,36.
Gọi biến cố \(A\): “Ít nhất một trong hai người đó gọi đúng số điện thoại đã quên mà không phải thử quá hai lần”.
Khi đó, biến cố \(\bar A\): “Cả hai người gọi thử cả 2 lần đều không đúng”.
Xác suất gọi sai cả 2 lần của mỗi người là \(\frac{9}{{10}} \cdot \frac{8}{9} = \frac{4}{5}\).
Hai người gọi điện là độc lập nên \[P\left( {\overline A } \right) = \frac{4}{5} \cdot \frac{4}{5} = \frac{{16}}{{25}}\].
Vậy \(P\left( A \right) = 1 - \frac{{16}}{{25}} = \frac{9}{{25}} = 0,36\).
Lời giải
Đáp án: 12,4.
Chọn hệ trục tọa độ \(Oxy\) như hình vẽ với \(M\left( {0\,;\,m} \right)\,\,\left( {m < 0} \right)\) là đỉnh của parabol \(\left( {{P_1}} \right)\).
Khi đó \(\left( {{P_1}} \right):y = \frac{{7 - m}}{{36}}{x^2} + m\) và \(\left( C \right):{x^2} + {y^2} = {m^2}.\)
Để \(\left( {{P_1}} \right),\,\,\left( C \right)\) có một điểm chung duy nhất thì phương trình sau có nghiệm duy nhất.
\({x^2} + {\left( {\frac{{7 - m}}{{36}}{x^2} + m} \right)^2} = {m^2} \Leftrightarrow {x^2}\left[ {{{\left( {\frac{{7 - m}}{{36}}} \right)}^2}{x^2} + \frac{{ - {m^2} + 7m + 18}}{{18}}} \right] = 0\).
\({\rm{YCBT}} \Leftrightarrow - {m^2} + 7m + 18 \ge 0 \Leftrightarrow - 2 \le m \le 9\). Mà \(m < 0\) nên \( - 2 \le m < 0\).
Khi đó, đường tròn \(\left( C \right)\) có diện tích lớn nhất khi \(\left( C \right)\) có bán kính lớn nhất, điều này xảy ra khi và chỉ khi \(m = - 2 \Rightarrow r = 2.\)
Hoành độ giao điểm của \(\left( {{P_1}} \right):y = \frac{1}{4}{x^2} - 2\) và trục hoành là \(x = \pm 2\sqrt 2 \).
Diện tích phần lát gạch là \(S = 4\int\limits_{2\sqrt 2 }^6 {\left( {\frac{1}{4}{x^2} - 2} \right){\rm{d}}x} + \pi {r^2} = \frac{{72 + 32\sqrt 2 }}{3} + 4\pi \).
Số tiền lát gạch là: \(240S \approx 12396,32\) (nghìn đồng) \( \approx 12,4\) (triệu đồng).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
