Câu hỏi:

24/05/2025 1,285 Lưu

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Chi phí về nhiên liệu của một con tàu được chia làm hai phần. Phần chi phí thứ nhất không phụ thuộc vào tốc độ tàu và bằng 480 nghìn đồng mỗi giờ. Chi phí phần thứ hai trên 1 km đường tỉ lệ thuận với lập phương của tốc độ tàu, khi tốc độ bằng \(20\)km/h thì chi phí phần thứ hai bằng 100 nghìn đồng mỗi giờ. Giả sử con tàu đó luôn giữ nguyên tốc độ di chuyển, để tổng chi phí nhiên liệu trên 1 km đường là nhỏ nhất thì tốc độ của con tàu đó bằng bao nhiêu km/h? (làm tròn kết quả đến hàng phần chục).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(22,5\).

Gọi \(x\,\,{\rm{(km/h)}}\) là tốc độ của tàu.

Thời gian tàu chạy quãng đường 1 km là \(\frac{1}{x}\) (giờ).

Chi phí tiền nhiên liệu phần thứ nhất cho quãng đường 1 km là: \(\frac{1}{x} \cdot 480\) (nghìn đồng).

Gọi \(y\) (nghìn đồng) là chi phí nhiên liệu phần thứ hai cho quãng đường 1 km ứng với tốc độ \(x\). Ta có \(y\) tỉ lệ thuận với lập phương tốc độ nên \(y = k{x^3}\) với \(k > 0\).

Khi tốc độ \(x = 20\,\,{\rm{(km/h)}}\) thì thời gian tàu chạy 1 km là \(\frac{1}{{20}}\) (giờ) nên chi phí phần thứ 2 cho quãng đường 1 km là \(\frac{1}{{20}} \cdot 100 = 5\) (nghìn đồng).

Suy ra \(5 = k \cdot {20^3}\) nên \(k = \frac{5}{{{{20}^3}}} = \frac{1}{{1600}}\), do đó \(y = \frac{{{x^3}}}{{1600}}\).

Vậy tổng chi phí tiền nhiên liệu cho 1 km đường là: \(P\left( x \right) = \frac{{480}}{x} + \frac{{{x^3}}}{{1600}}\).

Bài toán trở thành tìm \(x\) để \(P\left( x \right)\) nhỏ nhất.

Có \(P'\left( x \right) =  - \frac{{480}}{{{x^2}}} + \frac{{3{x^2}}}{{1600}};\,\,P'\left( x \right) = 0 \Leftrightarrow \frac{{3{x^2}}}{{1600}} = \frac{{480}}{{{x^2}}} \Rightarrow x = 4\sqrt[4]{{1000}}\).

Lập bảng biến thiên suy ra \(P\left( x \right)\) đạt GTNN tại \(x = 4\sqrt[4]{{1000}}\).

Vậy để tổng chi phí trên 1 km đường nhỏ nhất thì vận tốc của tàu là \(x = 4\sqrt[4]{{1000}} \approx 22,5\,{\rm{(km/h)}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(0,5\).

Gọi \(A\) là biến cố: “Trong 3 viên bi lấy ra từ hộp hai có 2 viên bi từ hộp thứ nhất chuyển sang”.

Gọi \(B\) là biến cố: “Ba viên bi lấy ra từ hộp hai là màu trắng”.

Trường hợp 1: 2 viên bi từ hộp thứ nhất chuyển sang là 2 viên bi trắng. Khi đó:

\({P_1}\left( B \right) = \frac{{C_7^2}}{{C_{12}^2}} \cdot \frac{{C_6^3}}{{C_{12}^3}} = \frac{7}{{242}}\).

Trường hợp 2: 2 viên bi từ hộp thứ nhất chuyển sang là 2 viên bi đỏ. Khi đó:

\({P_2}\left( B \right) = \frac{{C_5^2}}{{C_{12}^2}} \cdot \frac{{C_4^3}}{{C_{12}^3}} = \frac{1}{{363}}\).

Trường hợp 3: 2 viên bi từ hộp thứ nhất chuyển sang là 1 viên bi trắng và 1 viên bi đỏ. Khi đó:

\({P_3}\left( B \right) = \frac{{C_7^1.C_5^1}}{{C_{12}^2}} \cdot \frac{{C_5^3}}{{C_{12}^3}} = \frac{{35}}{{1452}}\).

Suy ra \(P\left( B \right) = {P_1}\left( B \right) + {P_2}\left( B \right) + {P_3}\left( B \right) = \frac{{27}}{{284}}\)\(P\left( {AB} \right) = {P_1}\left( B \right) = \frac{7}{{242}}\).

Do đó, \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{\frac{7}{{242}}}}{{\frac{{27}}{{484}}}} = \frac{{14}}{{27}} \approx 0,5\).

Lời giải

Đáp án: 2,07.

Chọn hệ trục tọa độ Oxy như hình vẽ dưới đây:

Hỏi sau khi đổ thêm, chiều cao của mực nước trong ly đã tăng thêm bao nhiêu centimét so với lúc ban đầu (làm tròn kết quả đến hàng phần trăm)? (ảnh 2) 

Gọi dạng của parabol là \(\left( P \right):{y^2} = 2px\).

Ta có \(x = 10,y = 4 \Rightarrow p = \frac{4}{5} \Rightarrow \left( P \right):{y^2} = \frac{8}{5}x\).

Thể tích ly nước nếu đổ đầy: \(V = \pi \int\limits_0^{10} {{y^2}{\rm{d}}x} = \pi \int\limits_0^{10} {\frac{8}{5}x{\rm{d}}x} = \left. {\frac{{4\pi {x^2}}}{5}} \right|_0^{10} = 80\pi .\)

Thể tích của nước trong ly lúc mới đổ lần đầu là: \(\pi \int\limits_0^{{h_1}} {\frac{8}{5}x{\rm{d}}x} = \frac{1}{4} \cdot 80\pi \Leftrightarrow \frac{{4h_1^2}}{5} = 20 \Rightarrow {h_1} = 5\).

Khi đó, chiều cao của nước ban đầu là \({h_1} = 5\,\left( {{\rm{cm}}} \right)\).

Thể tích của nước trong ly sau khi đổ thêm là: \(\pi \int\limits_0^{{h_2}} {\frac{8}{5}x{\rm{d}}x} = 2 \cdot \frac{1}{4} \cdot 80\pi \Leftrightarrow \frac{{4h_2^2}}{5} = 40 \Rightarrow {h_2} = 5\sqrt 2 \).

Chiều cao của mực nước sau khi đổ thêm là \({h_2} = 5\sqrt 2 \,\,\left( {{\rm{cm}}} \right)\).

Chiều cao của mực nước tăng thêm so với ban đầu: \(h = {h_2} - {h_1} = 5\sqrt 2 - 5 \approx 2,07{\rm{ (cm)}}{\rm{.}}\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(3\).                         
B. \(8\).                         
C. \(10\).                                 
D. \(9\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP