Câu hỏi:

23/05/2025 344

Có hai hộp đựng bi. Hộp thứ nhất chứa 7 viên bi màu trắng, 5 viên bi màu đỏ, hộp thứ hai chứa 4 viên bi màu trắng, 6 viên bi màu đỏ. Lấy ngẫu nhiên 2 viên bi từ hộp thứ nhất bỏ sang hộp thứ hai, sau đó lấy ngẫu nhiên 3 viên bi từ hộp thứ hai. Tính xác suất lấy được cả 2 viên bi thuộc hộp thứ nhất bỏ sang hộp thứ hai, biết rằng 3 viên bi đó màu trắng (kết quả làm tròn đến hàng phần mười).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: \(0,5\).

Gọi \(A\) là biến cố: “Trong 3 viên bi lấy ra từ hộp hai có 2 viên bi từ hộp thứ nhất chuyển sang”.

Gọi \(B\) là biến cố: “Ba viên bi lấy ra từ hộp hai là màu trắng”.

Trường hợp 1: 2 viên bi từ hộp thứ nhất chuyển sang là 2 viên bi trắng. Khi đó:

\({P_1}\left( B \right) = \frac{{C_7^2}}{{C_{12}^2}} \cdot \frac{{C_6^3}}{{C_{12}^3}} = \frac{7}{{242}}\).

Trường hợp 2: 2 viên bi từ hộp thứ nhất chuyển sang là 2 viên bi đỏ. Khi đó:

\({P_2}\left( B \right) = \frac{{C_5^2}}{{C_{12}^2}} \cdot \frac{{C_4^3}}{{C_{12}^3}} = \frac{1}{{363}}\).

Trường hợp 3: 2 viên bi từ hộp thứ nhất chuyển sang là 1 viên bi trắng và 1 viên bi đỏ. Khi đó:

\({P_3}\left( B \right) = \frac{{C_7^1.C_5^1}}{{C_{12}^2}} \cdot \frac{{C_5^3}}{{C_{12}^3}} = \frac{{35}}{{1452}}\).

Suy ra \(P\left( B \right) = {P_1}\left( B \right) + {P_2}\left( B \right) + {P_3}\left( B \right) = \frac{{27}}{{284}}\)\(P\left( {AB} \right) = {P_1}\left( B \right) = \frac{7}{{242}}\).

Do đó, \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{\frac{7}{{242}}}}{{\frac{{27}}{{484}}}} = \frac{{14}}{{27}} \approx 0,5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) \({P_1} = 0,15\).

Lời giải

Theo bài ra, ta có bảng sau:

Điểm

Xác suất

10

\({P_1}\)

9

\({P_2}\)

8

0,25

dưới 8

0,4

a) Đúng. Xác suất cả ba lần bắn trúng vòng \(10\) là: \({\left( {{P_1}} \right)^3} = 0,003375 \Rightarrow {P_1} = \sqrt[3]{{0,003375}} = 0,15\).

Câu 2

Có bao nhiêu nghiệm nguyên trong đoạn \(\left[ { - 5;5} \right]\) của bất phương trình \({\left( {\frac{1}{2}} \right)^{x + 2}} \le 2\).     

Lời giải

Ta có \({\left( {\frac{1}{2}} \right)^{x + 2}} \le 2 \Leftrightarrow {2^{ - x - 2}} \le 2 \Leftrightarrow - x - 2 \le 1 \Leftrightarrow x \ge - 3\).

\(x \in \mathbb{Z},x \in \left[ { - 5;5} \right]\) nên \(x \in \left\{ { - 3; - 2; - 1;0;1;2;3;4;5} \right\}\). Vậy có 9 giá trị nguyên. Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) \(f\left( e \right) = 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay