Câu hỏi:

24/05/2025 91

Trong không gian với hệ tọa độ \[Oxyz\], cho mặt phẳng \[\left( P \right):6x + 8y + 10z - 1 = 0\] và đường thẳng \[d:\frac{{x - 2}}{3} = \frac{{y + 1}}{4} = \frac{{z - 5}}{5}\]. Góc giữa đường thẳng \[d\] và mặt phẳng \[\left( P \right)\]     

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \[{\overrightarrow n _P} = \left( {6;8;10} \right),\,\,{\overrightarrow u _d} = \left( {3;4;5} \right) \Rightarrow {\overrightarrow n _P} = 2{\overrightarrow u _d}\] hay \[{\overrightarrow n _P}\] và \[{\overrightarrow u _d}\] cùng phương.

Vậy \[d \bot \left( P \right)\], do đó góc giữa đường thẳng \[d\] và mặt phẳng \[\left( P \right)\] bằng \(90^\circ \). Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 50.

Ta có giá bán cho mỗi tấn sản phẩm là \(p\left( x \right) = 90 - 0,01{x^2}\) (triệu đồng).

Nên bán \(x\) tấn sản phẩm thu được \(\left( {90 - 0,01{x^2}} \right)x\) (triệu đồng). Điều kiện \(0 < x \le 100\).

Lợi nhuận hàng tháng của nhà máy \(A\) khi sản xuất và bán \(x\) tấn sản phẩm cho nhà máy \(B\) là:

\(L\left( x \right) = \left( {90 - 0,01{x^2}} \right)x \cdot 90\%  - \frac{1}{2}\left( {200 + 27x} \right)\) (triệu đồng).

Hay \(L\left( x \right) =  - 0,009{x^3} + 67,5x - 100\).

Xét hàm số \(L\left( x \right) =  - 0,009{x^3} + 67,5x - 100\) trên nửa khoảng \(\left( {0;100} \right]\):

\(L'\left( x \right) =  - 0,027{x^2} + 67,5\);

\(L'\left( x \right) = 0 \Leftrightarrow  - 0,027{x^2} + 67,5 = 0 \Leftrightarrow {x^2} = 2500 \Rightarrow x = 50\).

Bảng biến thiên:

c (ảnh 1)

Như vậy nhà máy \(A\) cần sản xuất và bán \(50\) tấn sản phẩm cho nhà máy \(B\) mỗi tháng để thu được lợi nhuận cao nhất.

Lời giải

Đáp án: 5196.

c (ảnh 1) 

Gọi độ dài 3 cạnh \[AB,AD,AA'\] lần lượt là \[x,y,z\].

Thể tích của khối \[ABCD.A'B'C'D'\] là: \[V = xyz\].

Kẻ \(AK \bot BD\,\,\left( {K \in BD} \right)\), \(AH \bot A'K\,\,\left( {H \in A'K} \right)\). Ta chứng minh được \(AH \bot \left( {A'BD} \right)\).

Khoảng cách từ\[A\] tới mặt phẳng \[\left( {A'BD} \right)\] bằng \[AH = 10\] nên ta có:

\[\frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}} + \frac{1}{{A{{A'}^2}}} = \frac{1}{{{{10}^2}}}\] hay \[\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} + \frac{1}{{{z^2}}} = \frac{1}{{100}}\].

Ta cần tìm GTNN của biểu thức \[V = xyz\].

Áp dụng bất đẳng thức Cauchy cho ba số không âm \[\frac{1}{{{x^2}}}\], \[\frac{1}{{{y^2}}}\], \[\frac{1}{{{z^2}}}\] ta được:

\[\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} + \frac{1}{{{z^2}}} \ge 3 \cdot \sqrt[3]{{\frac{1}{{{x^2}}} \cdot \frac{1}{{{y^2}}} \cdot \frac{1}{{{z^2}}}}}\]\[ \Rightarrow \frac{1}{{100}} \ge 3 \cdot \frac{1}{{\sqrt[3]{{{x^2} \cdot {y^2} \cdot {z^2}}}}}\]\[ \Rightarrow x \cdot y \cdot z \ge \sqrt {{{300}^3}} \approx 5196\].

Dấu “=” xảy ra khi và chỉ khi \[x = y = z = 10\sqrt 3 \] (TM).

Vậy thể tích nhỏ nhất của khối hộp \[ABCD.A'B'C'D'\] là 5196 (đơn vị thể tích).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP