Câu hỏi:
24/05/2025 321
Cây đậu Hà Lan khi trồng có chiều cao \(3\) centimet. Gọi \(h\left( t \right)\) là độ cao tính bằng centimet của cây đậu Hà Lan tại thời điểm \(t\) kể từ khi được trồng, với \(t\) tính theo tuần. Khảo sát cho thấy tốc độ tăng chiều cao của cây đậu Hà Lan sau khi trồng là (centimet/tuần).
a) Hàm số \(h\left( t \right)\) có công thức là \(h\left( t \right) = - 0,005{t^4} + 0,1{t^3}\).
Cây đậu Hà Lan khi trồng có chiều cao \(3\) centimet. Gọi \(h\left( t \right)\) là độ cao tính bằng centimet của cây đậu Hà Lan tại thời điểm \(t\) kể từ khi được trồng, với \(t\) tính theo tuần. Khảo sát cho thấy tốc độ tăng chiều cao của cây đậu Hà Lan sau khi trồng là (centimet/tuần).
a) Hàm số \(h\left( t \right)\) có công thức là \(h\left( t \right) = - 0,005{t^4} + 0,1{t^3}\).
Quảng cáo
Trả lời:
a) Sai. Độ cao của cây đậu Hà Lan được xác định bằng công thức:
\(h\left( t \right) = \int {h'\left( t \right){\rm{d}}t} = \int {\left( { - 0,02{t^3} + 0,3{t^2}} \right){\rm{d}}t} = 0,005{t^4} + 0,1{t^3} + C\).
Tại thời điểm được trồng \(\left( {t = 0} \right)\) thì chiều cao của cây đậu bằng \(3\) centimet nên
\(h\left( 0 \right) = 3 \Rightarrow C = 3\).
Vậy \[\;h\left( t \right) = - 0,005{t^4} + 0,1{t^3} + 3\].
Câu hỏi cùng đoạn
Câu 2:
b) Giai đoạn tăng trưởng của cây đậu Hà Lan đó kéo dài \(15\) tuần.
b) Giai đoạn tăng trưởng của cây đậu Hà Lan đó kéo dài \(15\) tuần.
Lời giải của GV VietJack
b) Đúng. Xét hàm số \[\;h\left( t \right) = - 0,005{t^4} + 0,1{t^3} + 3\].
Ta có \(h'\left( t \right) = - 0,02{t^3} + 0,3{t^2} = 0 \Leftrightarrow \left[ \begin{array}{l}t = 15\\t = 0\end{array} \right.\).
Bảng biến thiên:
Dựa vào bảng biến thiên, giai đoạn tăng trưởng của cây đậu Hà Lan kéo dài 15 tuần.
Câu 3:
c) Chiều cao tối đa của cây đậu Hà Lan đó là \(88\) centimet.
c) Chiều cao tối đa của cây đậu Hà Lan đó là \(88\) centimet.
Lời giải của GV VietJack
c) Sai. Từ bảng biến thiên ở câu b), chiều cao tối đa của cây đậu Hà Lan là \(\frac{{699}}{8} \approx 87,38\) centimet.
Câu 4:
d) Vào thời điểm cây đậu Hà Lan phát triển nhanh nhất thì chiều cao của cây là \(53\) centimet.
d) Vào thời điểm cây đậu Hà Lan phát triển nhanh nhất thì chiều cao của cây là \(53\) centimet.
Lời giải của GV VietJack
d) Đúng. Xét hàm tốc độ tăng chiều cao của cây đậu Hà Lan sau khi trồng là:
\(h'\left( t \right) = - 0,02{t^3} + 0,3{t^2}\).
Ta có \(h''\left( t \right) = - 0,06{t^2} + 0,6t = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = 10\end{array} \right.\).
Bảng biến thiên:
Từ bảng biến thiên, ta thấy vào thời điểm \(t = 10\) cây đậu Hà Lan phát triển nhanh nhất, lúc đó cây cao \(h\left( {10} \right) = 53\) centimet.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 50.
Ta có giá bán cho mỗi tấn sản phẩm là \(p\left( x \right) = 90 - 0,01{x^2}\) (triệu đồng).
Nên bán \(x\) tấn sản phẩm thu được \(\left( {90 - 0,01{x^2}} \right)x\) (triệu đồng). Điều kiện \(0 < x \le 100\).
Lợi nhuận hàng tháng của nhà máy \(A\) khi sản xuất và bán \(x\) tấn sản phẩm cho nhà máy \(B\) là:
\(L\left( x \right) = \left( {90 - 0,01{x^2}} \right)x \cdot 90\% - \frac{1}{2}\left( {200 + 27x} \right)\) (triệu đồng).
Hay \(L\left( x \right) = - 0,009{x^3} + 67,5x - 100\).
Xét hàm số \(L\left( x \right) = - 0,009{x^3} + 67,5x - 100\) trên nửa khoảng \(\left( {0;100} \right]\):
\(L'\left( x \right) = - 0,027{x^2} + 67,5\);
\(L'\left( x \right) = 0 \Leftrightarrow - 0,027{x^2} + 67,5 = 0 \Leftrightarrow {x^2} = 2500 \Rightarrow x = 50\).
Bảng biến thiên:
Như vậy nhà máy \(A\) cần sản xuất và bán \(50\) tấn sản phẩm cho nhà máy \(B\) mỗi tháng để thu được lợi nhuận cao nhất.
Lời giải
Đáp án: 5196.
Gọi độ dài 3 cạnh \[AB,AD,AA'\] lần lượt là \[x,y,z\].
Thể tích của khối \[ABCD.A'B'C'D'\] là: \[V = xyz\].
Kẻ \(AK \bot BD\,\,\left( {K \in BD} \right)\), \(AH \bot A'K\,\,\left( {H \in A'K} \right)\). Ta chứng minh được \(AH \bot \left( {A'BD} \right)\).
Khoảng cách từ\[A\] tới mặt phẳng \[\left( {A'BD} \right)\] bằng \[AH = 10\] nên ta có:
\[\frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}} + \frac{1}{{A{{A'}^2}}} = \frac{1}{{{{10}^2}}}\] hay \[\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} + \frac{1}{{{z^2}}} = \frac{1}{{100}}\].
Ta cần tìm GTNN của biểu thức \[V = xyz\].
Áp dụng bất đẳng thức Cauchy cho ba số không âm \[\frac{1}{{{x^2}}}\], \[\frac{1}{{{y^2}}}\], \[\frac{1}{{{z^2}}}\] ta được:
\[\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} + \frac{1}{{{z^2}}} \ge 3 \cdot \sqrt[3]{{\frac{1}{{{x^2}}} \cdot \frac{1}{{{y^2}}} \cdot \frac{1}{{{z^2}}}}}\]\[ \Rightarrow \frac{1}{{100}} \ge 3 \cdot \frac{1}{{\sqrt[3]{{{x^2} \cdot {y^2} \cdot {z^2}}}}}\]\[ \Rightarrow x \cdot y \cdot z \ge \sqrt {{{300}^3}} \approx 5196\].
Dấu “=” xảy ra khi và chỉ khi \[x = y = z = 10\sqrt 3 \] (TM).
Vậy thể tích nhỏ nhất của khối hộp \[ABCD.A'B'C'D'\] là 5196 (đơn vị thể tích).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Bảng sau thống kê thời gian tập thể dục mỗi ngày trong tháng 3/2025 của hai bạn Hưng và Bình.
Thời gian (phút)
\[\left[ {10;15} \right)\]
\[\left[ {15;20} \right)\]
\[\left[ {20;25} \right)\]
\[\left[ {25;30} \right)\]
\[\left[ {30;35} \right)\]
Số ngày tập của Hưng
\[2\]
\[14\]
\[8\]
\[3\]
\[3\]
Số ngày tập của Bình
\[12\]
\[8\]
\[7\]
\[3\]
\[0\]
Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập của Hưng và Bình lần lượt là
Bảng sau thống kê thời gian tập thể dục mỗi ngày trong tháng 3/2025 của hai bạn Hưng và Bình.
Thời gian (phút) |
\[\left[ {10;15} \right)\] |
\[\left[ {15;20} \right)\] |
\[\left[ {20;25} \right)\] |
\[\left[ {25;30} \right)\] |
\[\left[ {30;35} \right)\] |
Số ngày tập của Hưng |
\[2\] |
\[14\] |
\[8\] |
\[3\] |
\[3\] |
Số ngày tập của Bình |
\[12\] |
\[8\] |
\[7\] |
\[3\] |
\[0\] |
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.