Câu hỏi:

26/05/2025 42

Cho parabol (P): y = x2 và đường thẳng (d): y = mx + 2m – 1. Với giá trị nào của tham số m thì (d) cắt (P) tại hai điểm A, B nằm về hai phía của trục tung?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

– Ta chứng minh phương trình ax2 + bx + c = 0 (a ≠ 0) có hai nghiệm trái dấu khi và chỉ khi ac < 0.

+ Xét phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0) có ac < 0.

Xét ∆ = b2 – 4ac.

Do ac < 0 nên – 4ac > 0

Lại có b2 ≥ 0 nên ∆ > 0.

Khi đó, phương trình đã cho có hai nghiệm phân biệt là:

\({x_1} = \frac{{ - b - \sqrt \Delta }}{{2a}};\,\,{x_2} = \frac{{ - b + \sqrt \Delta }}{{2a}}.\)

Ta có: \({x_1} \cdot {x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}} \cdot \frac{{ - b + \sqrt \Delta }}{{2a}} = \frac{{\left( { - b - \sqrt \Delta } \right)\left( { - b + \sqrt \Delta } \right)}}{{2a \cdot 2a}}\)

\( = \frac{{{{\left( { - b} \right)}^2} - {{\left( {\sqrt \Delta } \right)}^2}}}{{4{a^2}}} = \frac{{{b^2} - \Delta }}{{4{a^2}}}\)

\( = \frac{{{b^2} - \left( {{b^2} - 4ac} \right)}}{{4{a^2}}} = \frac{{4ac}}{{4{a^2}}} = \frac{c}{a}.\)

Vì ac < 0 nên hai số a và c trái dấu nhau, do đó \(\frac{c}{a} < 0.\)

Suy ra tích hai nghiệm của phương trình đã cho trái dấu nhau.

Như vậy, nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có ac < 0 thì phương trình này có hai nghiệm trái dấu.

+ Xét phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0) có hai nghiệm x1, x2 trái dấu.

Để phương trình có hai nghiệm phân biệt thì ∆ = b2 – 4ac > 0.

Khi đó, phương trình đã cho có hai nghiệm phân biệt là:

\({x_1} = \frac{{ - b - \sqrt \Delta }}{{2a}};\,\,{x_2} = \frac{{ - b + \sqrt \Delta }}{{2a}}.\)

Ta có: \({x_1} \cdot {x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}} \cdot \frac{{ - b + \sqrt \Delta }}{{2a}} = \frac{{\left( { - b - \sqrt \Delta } \right)\left( { - b + \sqrt \Delta } \right)}}{{2a \cdot 2a}}\)

\( = \frac{{{{\left( { - b} \right)}^2} - {{\left( {\sqrt \Delta } \right)}^2}}}{{4{a^2}}} = \frac{{{b^2} - \Delta }}{{4{a^2}}}\)

\( = \frac{{{b^2} - \left( {{b^2} - 4ac} \right)}}{{4{a^2}}} = \frac{{4ac}}{{4{a^2}}} = \frac{c}{a}.\)

Vì hai nghiệm x1, x2 trái dấu nên \(\frac{c}{a} < 0,\) suy ra hai số a và c trái dấu nhau, do đó ac < 0.

Như vậy, nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có hai nghiệm trái dấu thì phương trình này có ac < 0.

Vậy, phương trình ax2 + bx + c = 0 (a ≠ 0) có hai nghiệm trái dấu khi và chỉ khi ac < 0.

– Gọi (x; y) là tọa độ giao điểm (nếu có) của (d) và (P), khi đó ta có:

y = x2 và y = mx + 2m – 1.

Suy ra x2 = mx + 2m – 1 hay x2 – mx – 2m + 1 = 0. (*)

Để đường thẳng (d) cắt parabol (P) tại hai điểm A, B nằm về hai phía của trục tung, tức hoành độ của hai điểm A, B trái dấu nhau, thì phương trình (*) có hai nghiệm trái dấu, tức là ac < 0, hay 1.(–2m + 1) < 0, suy ra – 2m < –1, do đó \(m > \frac{1}{2}.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = 3x + m2 + 1. Khẳng định nào sau đây là đúng?

Xem đáp án » 26/05/2025 58

Câu 2:

Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = –m2 – 4m + 5. Số giá trị nguyên của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt là

Xem đáp án » 26/05/2025 57

Câu 3:

Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = –3x2 và đường thẳng y = (m + 1)x + 1. Số giá trị của m để đường thẳng (d) tiếp xúc với parabol (P) là

Xem đáp án » 26/05/2025 44

Câu 4:

Với giá trị nào của tham số m thì đường thẳng (d): y = mx – m + 2 tiếp xúc với parabol (P): y = 2x2?

Xem đáp án » 26/05/2025 30

Câu 5:

Với giá trị nào của m thì đường thẳng (d): y = –m và (P): y = 4x2 có điểm chung?

Xem đáp án » 26/05/2025 18

Câu 6:

Điều kiện của tham số m và n để parabol (P): y = x2 không có điểm chung với đường thẳng là (d): y = mx + n là

Xem đáp án » 26/05/2025 18
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay