Nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có hai nghiệm x1, x2 thì
A. \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = \frac{b}{a}}\\{{x_1}{x_2} = \frac{c}{a}}\end{array}} \right..\)
B. \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = - \frac{b}{a}}\\{{x_1}{x_2} = \frac{c}{a}}\end{array}} \right..\)
C. \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = - \frac{b}{a}}\\{{x_1}{x_2} = \frac{a}{c}}\end{array}} \right..\)
D. \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = - \frac{b}{a}}\\{{x_1}{x_2} = - \frac{c}{a}}\end{array}} \right..\)
Quảng cáo
Trả lời:

Đáp án đúng là: B
Nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có hai nghiệm x1, x2 thì theo định lí Viète, ta có: \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = - \frac{b}{a}}\\{{x_1}{x_2} = \frac{c}{a}}\end{array}} \right..\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. x1 + x2 = –5, x1x2 = 3.
B. x1 + x2 = –5, x1x2 = –3.
C. x1 + x2 = 5, x1x2 = –3.
D. x1 + x2 = 3, x1x2 = –5.
Lời giải
Đáp án đúng là: A
Nếu x1, x2 là hai nghiệm của phương trình –x2 – 5x – 3 = 0 thì theo định lí Viète, ta có: \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = - \frac{{ - 5}}{{ - 1}} = - 5}\\{{x_1}{x_2} = \frac{{ - 3}}{{ - 1}} = 3}\end{array}} \right..\)
Câu 2
A. 4.
B. 7.
C. 11.
D. 18.
Lời giải
Đáp án đúng là: D
Do phương trình x2 – 7x + 11 = 0 có hai nghiệm nên theo định lí Viète, ta có: \(\left\{ \begin{array}{l}S = 7\\P = 11\end{array} \right.\)
Do đó S + P = 7 + 11 = 18.
Câu 3
A. \(2\sqrt 5 .\)
B. \(3\sqrt 5 .\)
C. \(3\sqrt 2 .\)
D. \(5\sqrt 2 .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(2\sqrt {10001} .\)
B. \(\frac{{\sqrt {10001} }}{2}.\)
C. \(\frac{{\sqrt {10001} }}{{100}}.\)
D. \(\sqrt {10001} .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\sqrt 3 .\)
B. 3.
C. \(\sqrt 5 .\)
D. 5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.