Cho hai số u và v thỏa mãn u + v = 7 và uv = 12. Có bao nhiêu cặp số (u; v) thỏa mãn?
A. 0.
B. 1.
C. 2.
D. Vô số.
Quảng cáo
Trả lời:

Đáp án đúng là: C
Ta có: (u + v)2 – 4.uv = 72 – 4.12 = 1 > 0 nên u và v là hai nghiệm của phương trình:
x2 – 7x + 12 = 0.
Phương trình trên có ∆ = (–7)2 – 4.1.12 = 1 > 0 và \(\sqrt \Delta = \sqrt 1 = 1.\)
Do đó phương trình có hai nghiệm phân biệt là: \({x_1} = \frac{{7 - 1}}{{2 \cdot 1}} = 3;\,\,{x_2} = \frac{{7 + 1}}{{2 \cdot 1}} = 4.\)
Như vậy hai số cần tìm trong trường hợp này là u = 3; v = 4 hoặc u = 4; v = 3.
Vậy có 2 cặp số (u; v) thỏa mãn yêu cầu đề bài.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. 2X2 – mX + 1 = 0.
B. 2X2 + mX + 1 = 0.
C. 2X2 – mX – 1 = 0.
D. 2X2 + mX – 1 = 0.
Lời giải
Đáp án đúng là: C
Phương trình x2 + mx – 2 = 0 có ∆ = m2 – 4.1.(–2) = m2 + 8 > 0 với mọi m.
Do đó, phương trình đã cho có hai nghiệm phân biệt x1, x2 với mọi m.
Theo định lí Viète, ta có:
\(\left\{ \begin{array}{l}{x_1} + {x_2} = - m\\{x_1}{x_2} = - 2\end{array} \right..\)
Ta có: \(S = \frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = \frac{{{x_1} + {x_2}}}{{{x_1}{x_2}}} = \frac{{ - m}}{{ - 2}} = \frac{m}{2}.\)
Và \(P = \frac{1}{{{x_1}}} \cdot \frac{1}{{{x_2}}} = \frac{1}{{{x_1}{x_2}}} = \frac{1}{{ - 2}} = \frac{{ - 1}}{2}.\)
Khi đó, \[{S^2} - 4P = {\left( {\frac{m}{2}} \right)^2} - 4 \cdot \frac{{ - 1}}{2} = \frac{{{m^2}}}{4} + 2 > 0\] với mọi m.
Do đó, với mọi m thì ta có \(\frac{1}{{{x_1}}}\) và \(\frac{1}{{{x_2}}}\) là hai nghiệm của phương trình bậc hai \[{X^2} - \frac{m}{2}X + \frac{{ - 1}}{2} = 0\] hay 2X2 – mX – 1 = 0.
Câu 2
A. 19.
B. 17.
C. 7.
D. –19.
Lời giải
Đáp án đúng là: B
Ta có: (x + y)2 – 4.xy = (–5)2 – 4.6 = 1 > 0 nên x và y là hai nghiệm của phương trình:
X2 + 5X + 6 = 0.
Phương trình trên có ∆ = 52 – 4.1.6 = 1 > 0 và \(\sqrt \Delta = \sqrt 1 = 1.\)
Do đó phương trình có hai nghiệm phân biệt là: \({x_1} = \frac{{ - 5 - 1}}{{2 \cdot 1}} = - 3;\,\,{x_2} = \frac{{ - 5 + 1}}{{2 \cdot 1}} = - 2.\)
Như vậy hai số cần tìm trong trường hợp này là x = –3; y = –2 hoặc x = –2; y = –3.
Mà x < y nên ta chọn x = –3; y = –2.
Khi đó, A = x2 – 2y + y2 = (–3)2 – 2.(–2) + (–2)2 = 17.
>Câu 3
A. (3m + 6)X2 + (6m + 10)X + 3m = 0.
B. (3m + 6)X2 – (6m + 10)X + 3m = 0.
C. (3m + 6)X2 + (6m + 10)X – 3m = 0.
D. (3m + 6)X2 – (6m + 10)X – 3m = 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. S2 + 4P > 0.
B. S2 – 4P > 0.
C. S2 + 4P ≥ 0.
D. S2 – 4P ≥ 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. x2 + Sx + P = 0.
B. x2 + Sx – P = 0.
C. x2 – Sx + P = 0.
D. x2 – Sx – P = 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. –9.
B. 9.
C. –1.
D. 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. 9m2X2 + 2(6m + 25)X + 4 = 0.
B. 9m2X2 – 2(6m + 25)X + 4 = 0.
C. 9m2X2 + 2(6m + 25)X – 4 = 0.
D. 9m2X2 – 2(6m + 25)X – 4 = 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.