Cho hai đường tròn (O; R) và (O'; R') tiếp xúc trong với nhau tại A và R > R'. Qua điểm B bất kì trên (O') vẽ tiếp tuyến với (O') cắt (O) tại hai điểm M và N, AB cắt (O) tại C. Khi đó:
(I). MN ⊥ OC.
(II) AC là phân giác của \[\widehat {MAN}\].
(III). MN ⊥ AB.
Các phát biểu đúng là:
Quảng cáo
Trả lời:

Đáp án đúng là: C
Vì ∆O
'AB cân tại O' nên \[\widehat {O'AB} = \widehat {O'BA}\].∆OAC cân tại O nên \[\widehat {OAC} = \widehat {OCA}\].
Suy ra \[\widehat {OCA} = \widehat {O'BA}\], mà hai góc này ở vị trí đồng vị, do đó, O'B // OC.
Mặt khác MN là tiếp tuyến của (O') tại B.
Do đó, O'B ⊥MN. Suy ra OC ⊥ MN.
Trong đường tròn (O), có ON là đường trung trực của MN.
Suy ra CM = CN từ đó .
Do đó, \[\widehat {MAC} = \widehat {NAC}\].
Hay AC là phân giác của góc MAN.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Có hai đường cao BD và CE cắt nhau tại H nên H là trực tâm của ∆ABC.
Do đó AH ⊥ BC.
Có M là trung điểm BC nên OM ⊥ BC.
Suy ra OM // AH.
Có BF // EC (cùng vuông với AB)
BD // FC (cùng vuông với AC)
Do đó, BHCF là hình bình hành, có M là trung điểm BC, nên M cũng là trung điểm của đường chép HF.
Mà OM // AH nên OM là đường trung bình của tam giác HAF.
Suy ra \[HM = \frac{{HF}}{2}.\]
Do đó, ý D sai.
Lời giải
Đáp án đúng là: D
Gọi E là giao điểm của IM và AD.
Ta có: AC ⊥ BD tại I nên ∆BCI vuông tại I.
Mà MB = MC nên MI = MB (tính chất đường trung tuyến trong tam giác vuông).
Do đó, ∆MBI cân.
Suy ra \[\widehat {MIB} = \widehat {MBI}\] mà \[\widehat {NID} = \widehat {BIM}\] đối đỉnh do đó \[\widehat {MBI} = \widehat {NID}\].
Ta có: \[\widehat {BDA} = \widehat {BCA}\](góc nội tiếp chắn cung AB)
Mà \[\widehat {BCA} + \widehat {MBI} = 90^\circ \] (tam giác BIC vuông tại I).
Suy ra \[\widehat {NID} + \widehat {BDA} = 90^\circ \] hay \[\widehat {AEI} = 90^\circ \] hay MI ⊥ AD.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.