Câu hỏi:

27/05/2025 140 Lưu

Cho tam giác ABC có ba góc nhọn, đường cao AH và nội tiếp đường tròn (O), đường kính AM. Gọi N là giao điểm của AH với đường tròn (O). Chọn khẳng định sai.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Xét ∆ABH và ∆AMC, có:

\[\widehat {BHA} = \widehat {MCA} = 90^\circ \],

\[\widehat {ABC} = \widehat {AMC}\] (góc nội tiếp cùng chắn cung AC)

Do đó, ∆ABH ᔕ ∆AMC (gg)

Suy ra \[\widehat {BAH} = \widehat {OAC}\].

Do đó, .

Suy ra, \[\widehat {MNC} = \widehat {NCB}\] (góc nội tiếp chắn hai cung bằng nhau).

Mà hai góc ở vị trí so le trong nên MN // BC.

Do đó, NMCB là hình thang.

Lại có nên BN = MC hay NMBC là hình thang cân.

Suy ra NC = BM.

Có \[\widehat {ANM} = 90^\circ \] (góc nội tiếp chắn nửa đường tròn).

Do đó, khẳng định B sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Có hai đường cao BD và CE cắt nhau tại H nên H là trực tâm của ∆ABC.

Do đó AH ⊥ BC.

Có M là trung điểm BC nên OM ⊥ BC.

Suy ra OM // AH.

Có BF // EC (cùng vuông với AB)

BD // FC (cùng vuông với AC)

Do đó, BHCF là hình bình hành, có M là trung điểm BC, nên M cũng là trung điểm của đường chép HF.

Mà OM // AH nên OM là đường trung bình của tam giác HAF.

Suy ra \[HM = \frac{{HF}}{2}.\]

Do đó, ý D sai.

Lời giải

Đáp án đúng là: D

Gọi E là giao điểm của IM và AD.

Ta có: AC ⊥ BD tại I nên ∆BCI vuông tại I.

Mà MB = MC nên MI = MB (tính chất đường trung tuyến trong tam giác vuông).

Do đó, ∆MBI cân.

Suy ra \[\widehat {MIB} = \widehat {MBI}\] mà \[\widehat {NID} = \widehat {BIM}\] đối đỉnh do đó \[\widehat {MBI} = \widehat {NID}\].

Ta có: \[\widehat {BDA} = \widehat {BCA}\](góc nội tiếp chắn cung AB)

Mà \[\widehat {BCA} + \widehat {MBI} = 90^\circ \] (tam giác BIC vuông tại I).

Suy ra \[\widehat {NID} + \widehat {BDA} = 90^\circ \] hay \[\widehat {AEI} = 90^\circ \] hay MI ⊥ AD.

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP