Câu hỏi:

30/05/2025 58

PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI

Cho hàm số mũ \(f\left( x \right) = {9^{2x}}{.27^{{x^2}}}\). Xét phương trình \(f\left( x \right) = \frac{1}{3}\).

a) x = 0 là một nghiệm của phương trình.

b) \(f\left( x \right) = {3^{3{x^2} + 4x}}\).

c) Đồ thị hàm số luôn nằm phía trên trục hoành.

d) \({\left( {{x_1}} \right)^2} + {\left( {{x_2}} \right)^2} = \frac{{10}}{9}\) với x1; x2 là hai nghiệm của phương trình trên.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Phương trình \(f\left( x \right) = \frac{1}{3}\)\( \Leftrightarrow {9^{2x}}{.27^{{x^2}}} = \frac{1}{3}\).

Thay x = 0 vào phương trình ta được \({9^{2.0}}{.27^{{0^2}}} = \frac{1}{3}\) (vô lí).

Vậy x = 0 không là nghiệm của phương trình.

b) Ta có \(f\left( x \right) = {9^{2x}}{.27^{{x^2}}}\)\( = {3^{4x}}{.3^{3{x^2}}}\)\( = {3^{3{x^2} + 4x}}\).

c) Đồ thị hàm số f(x) luôn nằm phía trên trục hoành.

d) Có \(f\left( x \right) = \frac{1}{3}\)\( \Leftrightarrow {3^{3{x^2} + 4x}} = \frac{1}{3}\)\( \Leftrightarrow {3^{3{x^2} + 4x}} = {3^{ - 1}}\)\( \Leftrightarrow 3{x^2} + 4x = - 1\)\( \Leftrightarrow x = - \frac{1}{3}\) hoặc x = −1.

Khi đó \({\left( {{x_1}} \right)^2} + {\left( {{x_2}} \right)^2} = {\left( { - \frac{1}{3}} \right)^2} + {\left( { - 1} \right)^2} = \frac{{10}}{9}\).

Đáp án: a) Sai;   b) Đúng;   c) Đúng;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

D

Điều kiện \(x \ne 0\).

\({\log _4}{x^2} - {\log _2}3 = 1 \Leftrightarrow \frac{1}{2}{\log _2}{x^2} = 1 + {\log _2}3 \Leftrightarrow {\log _2}{x^2} = 2.{\log _2}6 \Leftrightarrow {x^2} = {6^2}\)

Dó đó, tổng các nghiệm sẽ bằng \(0\).

Câu 2

Lời giải

C

\({4^{x + 1}} + {4^{x - 1}} = 272\)\( \Leftrightarrow {4.4^x} + \frac{{{4^x}}}{4} = 272\)\( \Leftrightarrow {4^x} = 64\)\( \Leftrightarrow x = 3\)

Vậy phương trình có tập nghiệm \[S = \left\{ 3 \right\}\].

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP