Câu hỏi:
30/05/2025 47
Người ta dùng thuốc để khử khuẩn cho một thùng nước. Biết rằng nếu lúc đầu mỗi mililít nước chứa P0 vi khuẩn thì sau t giờ (kể từ khi cho thuốc vào thùng), số lượng vi khuẩn trong mỗi mililít nước là P = P0.10-αt với α là một hằng số dương nào đó. Biết rằng ban đầu mỗi mililít nước có 4000 vi khuẩn và sau 2 giờ, số lượng vi khuẩn trong mỗi mililít nước là 1000.
a) α nằm trong khoảng (1; 2).
b) Sau 3 giờ 30 phút thì lượng vi khuẩn trong mỗi mililít nước ít hơn 500.
c) Lượng vi khuẩn mất đi trong mỗi mililít trong khoảng thời gian từ 1 giờ đến 2,5 giờ tính từ lúc dùng thuốc thì lớn hơn 1200.
d) Lượng vi khuẩn sau khoảng 1,32 giờ sẽ bằng 40% lượng vi khuẩn ban đầu.
Người ta dùng thuốc để khử khuẩn cho một thùng nước. Biết rằng nếu lúc đầu mỗi mililít nước chứa P0 vi khuẩn thì sau t giờ (kể từ khi cho thuốc vào thùng), số lượng vi khuẩn trong mỗi mililít nước là P = P0.10-αt với α là một hằng số dương nào đó. Biết rằng ban đầu mỗi mililít nước có 4000 vi khuẩn và sau 2 giờ, số lượng vi khuẩn trong mỗi mililít nước là 1000.
a) α nằm trong khoảng (1; 2).
b) Sau 3 giờ 30 phút thì lượng vi khuẩn trong mỗi mililít nước ít hơn 500.
c) Lượng vi khuẩn mất đi trong mỗi mililít trong khoảng thời gian từ 1 giờ đến 2,5 giờ tính từ lúc dùng thuốc thì lớn hơn 1200.
d) Lượng vi khuẩn sau khoảng 1,32 giờ sẽ bằng 40% lượng vi khuẩn ban đầu.
Quảng cáo
Trả lời:
a) Ta có \(P = {P_0}{.10^{ - \alpha t}}\) \( \Rightarrow 1000 = {4000.10^{ - 2\alpha }}\) \( \Rightarrow \alpha = - \frac{1}{2}\log \frac{1}{4} = \frac{1}{2}\log 4 \approx 0,31 \notin \left( {1;2} \right)\).
b) Ta có \(P = {P_0}{.10^{ - \alpha t}} < 500\)\( \Leftrightarrow {4000.10^{ - \alpha t}} < 500\)\( \Leftrightarrow {10^{ - \alpha t}} < \frac{1}{8}\)\( \Leftrightarrow - \alpha t < \log \frac{1}{8}\)\( \Leftrightarrow t > - \frac{1}{\alpha }\log \frac{1}{8}\)
\( \Leftrightarrow t > - \frac{1}{{\frac{1}{2}\log 4}}\log \frac{1}{8}\)\( \Leftrightarrow t > 3\).
c) Lượng vi khuẩn trong mỗi mililít nước sau 1 giờ là \({4000.10^{ - \frac{1}{2}\log 4.1}} = 2000\).
Lượng vi khuẩn trong mỗi mililít nước sau 2,5 giờ là \({4000.10^{ - \frac{1}{2}\log 4.2,5}} \approx 707\).
Lượng vi khuẩn mất đi khoảng 2000 – 707 = 1293 > 1200.
d) Ta có \[P = {P_0}{.10^{ - \alpha t}} = \frac{{40}}{{100}}.{P_0}\]\[ \Leftrightarrow {10^{ - \alpha t}} = \frac{2}{5}\]\[ \Leftrightarrow t = \frac{{\log \frac{2}{5}}}{{ - \alpha }} = \frac{{\log \frac{2}{5}}}{{ - \frac{1}{2}\log 4}} \approx 1,32\].
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Đúng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
D
Điều kiện \(x \ne 0\).
Có \({\log _4}{x^2} - {\log _2}3 = 1 \Leftrightarrow \frac{1}{2}{\log _2}{x^2} = 1 + {\log _2}3 \Leftrightarrow {\log _2}{x^2} = 2.{\log _2}6 \Leftrightarrow {x^2} = {6^2}\)
Dó đó, tổng các nghiệm sẽ bằng \(0\).
Lời giải
C
\({4^{x + 1}} + {4^{x - 1}} = 272\)\( \Leftrightarrow {4.4^x} + \frac{{{4^x}}}{4} = 272\)\( \Leftrightarrow {4^x} = 64\)\( \Leftrightarrow x = 3\)
Vậy phương trình có tập nghiệm \[S = \left\{ 3 \right\}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.