Câu hỏi:

31/05/2025 59

Cho hình chóp đều \(S.ABC\) có độ dài cạnh đáy bằng 1 và độ dài cạnh bên là 2. Tính khoảng cách từ \(A\) đến mặt phẳng \((SBC)\) (làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

V (ảnh 1)

Gọi I là trung điểm của BC Þ AI ^ BC.

Gọi O là trọng tâm DABC. Vì S.ABC là hình chóp đều nên SO ^ (ABC).

Kẻ \(OH \bot SI\) tại \(H\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot OI}\\{BC \bot SO}\end{array} \Rightarrow BC \bot (SOI) \Rightarrow BC \bot OH} \right.\)

Ta lại có: \(OH \bot SI \Rightarrow OH \bot (SBC) \Rightarrow d(O,(SBC)) = OH\)

Ta có: \(OI = \frac{1}{3} \cdot \frac{{\sqrt 3 }}{2} = \frac{{\sqrt 3 }}{6}\); \(SO = \sqrt {S{B^2} - O{B^2}} = \sqrt {{2^2} - {{\left( {\frac{2}{3} \cdot \frac{{\sqrt 3 }}{2}} \right)}^2}} = \frac{{\sqrt {33} }}{3}\).

Ta có: \(OH = \frac{1}{{\sqrt {\frac{1}{{S{O^2}}} + \frac{1}{{O{I^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{{\left( {\frac{{\sqrt {33} }}{3}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{\sqrt 3 }}{6}} \right)}^2}}}} }} = \frac{{\sqrt {165} }}{{45}}\).

Vậy \(d(O,(SBC)) = \frac{{\sqrt {165} }}{{45}}\).

Ta có: \(AO\) cắt ( \(SBC)\) tại \(I\)

\( \Rightarrow \frac{{d(A,(SBC))}}{{d(O,(SBC))}} = \frac{{AI}}{{OI}} = 3 \Rightarrow d(A,(SBC)) = 3d(O,(SBC)) = \frac{{\sqrt {165} }}{{15}} \approx 0,86\).

Trả lời: 0,86.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp \(S.ABCD\) có \(SA \bot (ABCD),SA = a\sqrt 3 ,ABCD\) là hình vuông cạnh bằng \(a\). Khi đó:

a) \[d(A,(SBC)) = \frac{{\sqrt 3 }}{3}a\].

b) \(AD//(SBC)\).

c) \(d(D,(SBC)) = \frac{{\sqrt 3 }}{2}a\).

d) Gọi \(M\) là trung điểm \(SA\). Khi đó: \(d(M,(SBC)) = \frac{{\sqrt 3 }}{4}a\).

Xem đáp án » 31/05/2025 129

Câu 2:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách giữa hai đường thẳng SA và BC bằng

Xem đáp án » 31/05/2025 78

Câu 3:

Cho hình chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\) và đáy \(ABCD\) là hình vuông tâm \(O\).

a) \(\left( {\left( {SBC} \right),\left( {ABCD} \right)} \right) = \widehat {SBA}\). 

b) \(d\left( {D,\left( {SAC} \right)} \right) = DO\).

c) \[\left( {SC,\left( {SAD} \right)} \right) = \widehat {CSD}\].                                                                           

d) \[d\left( {CD,SB} \right) = BD\].

Xem đáp án » 31/05/2025 57

Câu 4:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng a, SA ^ (ABCD). Biết góc phẳng nhị diện [S, BC, A] = 60°.

a) BD ^ SC.

b) [S, BC, A] = \(\widehat {SBA}\).

c) d(S, (ABCD)) = \(a\sqrt 2 \).

d) \(d\left( {C,(SBD)} \right) = \frac{{a\sqrt 2 }}{2}\).

Xem đáp án » 31/05/2025 55

Câu 5:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA ^ (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào? 

Xem đáp án » 31/05/2025 50

Câu 6:

PHẦN II. TRẢ LỜI NGẮN

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2, cạnh bên SA vuông góc với đáy và SA = \(\sqrt 3 \). Khoảng cách từ D đến mặt phẳng (SBC) bằng bao nhiêu? (kết quả làm tròn đến hàng phần trăm).

Xem đáp án » 31/05/2025 47
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay