Câu hỏi:

05/06/2025 141 Lưu

Giả sử nhiệt độ bên trong một căn phòng sau \(t\) giờ với \(0 \le t \le 12\) kể từ 12 giờ trưa được tính theo công thức \(T\left( t \right) = 5\cos \left( {\frac{\pi }{2} - \frac{{\pi t}}{6}} \right) + 26\). Biết rằng tập giá trị \(G\) của hàm số \(T\left( t \right)\) có dạng là \(\left[ {a;b} \right].\) Hãy tính \(P = a + b.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \( - 1 \le \cos \left( {\frac{\pi }{2} - \frac{{\pi t}}{6}} \right) \le 1,\forall t \in \left[ {0;12} \right]\) vì chu kì của hàm số này là 12.

Suy ra \( - 1.5 \le 5.\cos \left( {\frac{\pi }{2} - \frac{{\pi t}}{6}} \right) \le 1.5,\forall t \in \left[ {0;12} \right]\).

Do đó: \( - 1.5 + 26 \le 5.\cos \left( {\frac{\pi }{2} - \frac{{\pi t}}{6}} \right) + 26 \le 1.5 + 26,\forall t \in \left[ {0;12} \right]\).

Hay \[21 \le 5.\cos \left( {\frac{\pi }{2} - \frac{{\pi t}}{6}} \right) + 26 \le 31,\forall t \in \left[ {0;12} \right]\].

Suy ra, tập giá trị \(G = \left[ {21;31} \right]\). Do đó, \(P = 21 + 31 = 52.\)

Đáp án: 52.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Khi \(t = 5\), ta có: \(h\left( 5 \right) = 75\sin \left( {\frac{{\pi \cdot 5}}{8}} \right) \approx 69,3\,\,{\rm{(cm)}}\).

Khi \(t = 20\), ta có: \(h\left( {20} \right) = 75\sin \left( {\frac{{\pi \cdot 20}}{8}} \right) = 75\,\,{\rm{(cm)}}\).

Ta có \(\sin \left( {\frac{{\pi t}}{8}} \right) \le 1 \Rightarrow 75\sin \left( {\frac{{\pi t}}{8}} \right) \le 75\) hay \(h\left( t \right) \le 75\).

Giá trị lớn nhất của \(h\left( t \right)\) là 75, khi đó \(\sin \left( {\frac{{\pi t}}{8}} \right) = 1 \Rightarrow \frac{{\pi t}}{8} = \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\) \( \Rightarrow t = 4 + 16k\left( {k \in \mathbb{Z}} \right)\).

\(t \in \left[ {0\,;30} \right] \Rightarrow t \in \left\{ {4\,;20} \right\}\) (ứng với \(k\) bằng 0 và 1).

Vậy tại các thời điểm 4 giây hoặc 20 giây (trong 30 giây đầu tiên) thì cơn sóng đạt chiều cao cực đại (là \(75\;\,{\rm{cm}}\)).

Đáp án:           a) Đúng,          b) Đúng,         c) Sai,              d) Sai.

Câu 2

Lời giải

Đáp án đúng là: B

Ta dễ dàng kiểm tra được A, C, D là các hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ \(O\).

Xét đáp án B, ta có \[y = f\left( x \right) = {\sin ^3}x.\cos \left( {x - \frac{\pi }{2}} \right) = {\sin ^3}x.\sin x = {\sin ^4}x\]. Kiểm tra được đây là hàm số chẵn nên có đồ thị đối xứng qua trục tung.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP