Câu hỏi:
05/06/2025 32
Giả sử nhiệt độ bên trong một căn phòng sau \(t\) giờ với \(0 \le t \le 12\) kể từ 12 giờ trưa được tính theo công thức \(T\left( t \right) = 5\cos \left( {\frac{\pi }{2} - \frac{{\pi t}}{6}} \right) + 26\). Biết rằng tập giá trị \(G\) của hàm số \(T\left( t \right)\) có dạng là \(\left[ {a;b} \right].\) Hãy tính \(P = a + b.\)
Giả sử nhiệt độ bên trong một căn phòng sau \(t\) giờ với \(0 \le t \le 12\) kể từ 12 giờ trưa được tính theo công thức \(T\left( t \right) = 5\cos \left( {\frac{\pi }{2} - \frac{{\pi t}}{6}} \right) + 26\). Biết rằng tập giá trị \(G\) của hàm số \(T\left( t \right)\) có dạng là \(\left[ {a;b} \right].\) Hãy tính \(P = a + b.\)
Quảng cáo
Trả lời:
Ta có \( - 1 \le \cos \left( {\frac{\pi }{2} - \frac{{\pi t}}{6}} \right) \le 1,\forall t \in \left[ {0;12} \right]\) vì chu kì của hàm số này là 12.
Suy ra \( - 1.5 \le 5.\cos \left( {\frac{\pi }{2} - \frac{{\pi t}}{6}} \right) \le 1.5,\forall t \in \left[ {0;12} \right]\).
Do đó: \( - 1.5 + 26 \le 5.\cos \left( {\frac{\pi }{2} - \frac{{\pi t}}{6}} \right) + 26 \le 1.5 + 26,\forall t \in \left[ {0;12} \right]\).
Hay \[21 \le 5.\cos \left( {\frac{\pi }{2} - \frac{{\pi t}}{6}} \right) + 26 \le 31,\forall t \in \left[ {0;12} \right]\].
Suy ra, tập giá trị \(G = \left[ {21;31} \right]\). Do đó, \(P = 21 + 31 = 52.\)
Đáp án: 52.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Khi \(t = 5\), ta có: \(h\left( 5 \right) = 75\sin \left( {\frac{{\pi \cdot 5}}{8}} \right) \approx 69,3\,\,{\rm{(cm)}}\).
Khi \(t = 20\), ta có: \(h\left( {20} \right) = 75\sin \left( {\frac{{\pi \cdot 20}}{8}} \right) = 75\,\,{\rm{(cm)}}\).
Ta có \(\sin \left( {\frac{{\pi t}}{8}} \right) \le 1 \Rightarrow 75\sin \left( {\frac{{\pi t}}{8}} \right) \le 75\) hay \(h\left( t \right) \le 75\).
Giá trị lớn nhất của \(h\left( t \right)\) là 75, khi đó \(\sin \left( {\frac{{\pi t}}{8}} \right) = 1 \Rightarrow \frac{{\pi t}}{8} = \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\) \( \Rightarrow t = 4 + 16k\left( {k \in \mathbb{Z}} \right)\).
Vì \(t \in \left[ {0\,;30} \right] \Rightarrow t \in \left\{ {4\,;20} \right\}\) (ứng với \(k\) bằng 0 và 1).
Vậy tại các thời điểm 4 giây hoặc 20 giây (trong 30 giây đầu tiên) thì cơn sóng đạt chiều cao cực đại (là \(75\;\,{\rm{cm}}\)).
Đáp án: a) Đúng, b) Đúng, c) Sai, d) Sai.
Lời giải
Ta có \(f\left( {\frac{\pi }{8}} \right) = \tan \frac{\pi }{4} - 1 = 0\).
Điều kiện xác định: \(2x \ne \frac{\pi }{2} + k\pi ,\,k \in \mathbb{Z} \Leftrightarrow x \ne \frac{\pi }{4} + \frac{{k\pi }}{2},\,k \in \mathbb{Z}\).
Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ {\frac{\pi }{4} + \frac{{k\pi }}{2}|k \in \mathbb{Z}} \right\}\) và tập giá trị của hàm số là \[\mathbb{R}.\]
Ta có \(f\left( { - x} \right) = \tan \left( { - 2x} \right) - 1 = - \tan 2x - 1\) nên hàm số \(f\left( x \right)\) không chẵn không lẻ.
Ta có \(f\left( {x + \pi } \right) = \tan \left( {2x + \pi } \right) - 1 = \tan 2x - 1 = f\left( x \right)\).
Vậy hàm số \(f\left( x \right)\) là hàm tuần hoàn với chu kì \(\pi \).
Đáp án: a) Đúng, b) Sai, c) Sai, d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.